23 February 2022, 2:00

Уникальная структура микроскопических пластин/частиц обеспечила высокую жаропрочность алюминиевых сплавов

Российские ученые с норвежскими коллегами исследовали атомную структуру пластин/частиц, ответственную за высокие прочностные свойства алюминиевых сплавов при повышенных температурах. Специалисты смоделировали атомные конфигурации пластин/частиц и оценили их структурную согласуемость с окружающей алюминиевой матрицей. Эти знания помогут разработать новые технологии производства высокопрочных алюминиевых сплавов. Результаты исследования, поддержанного грантом Российского научного фонда (РНФ), были опубликованы в журнале Materials Characterization.

Уникальная структура микроскопических пластин/частиц обеспечила высокую жаропрочность алюминиевых сплавов
Микроструктура сплавов Al-Cu-Mg-Ag, после термической обработки при температуре 150°C (а) и 190°C (b)
Source: Gazizov et al. / Materials Characterization, 2022

Современная авиационная промышленность предъявляет все более высокие требования к материалам для авиастроения, которые должны сочетать в себе легкость, прочность, устойчивость к нагрузкам, трещинам, повышенным температурам и коррозии. Поэтому в производстве воздушных судов используются алюминиевые сплавы, отвечающие определенному набору характеристик. Однако при эксплуатации обшивка корпуса и крыльев самолета подвергаются колоссальной нагрузке, что при особом температурном режиме работы ускоряет их износ и последующее разрушение.

Обычно требуемые механические и химические (в частности, коррозионные) свойства алюминиевых сплавов достигаются благодаря термической или термомеханической обработке. Кроме того, свойства материала зависят от его химического состава (легирования), который определяется в процессе литья. Таким образом, множество различных факторов может оказывать влияние на конечные свойства готовых изделий. Чтобы соответствовать постоянно ужесточающимся требованиям к характеристикам авиационных материалов, разрабатываются алюминиевые сплавы с добавками меди (Cu), магния (Mg), серебра (Ag) и ряда других химических элементов. Данные сплавы, относящиеся к системе легирования Al-Cu-Mg-Ag, отличаются высокой жаропрочностью по сравнению с другими алюминиевыми аналогами. Однако атомная структура Al-Cu-Mg-Ag сплавов, ее изменение при разных режимах термической и термомеханической обработки, а также в процессе эксплуатации деталей при повышенных температурах до сих пор плохо изучены.

Ученые из Белгородского государственного национального исследовательского университета (Белгород) и Сколковского института науки и технологий (Москва) совместно с коллегами из независимой исследовательской организации SINTEF (Норвегия) и Норвежского университета естественных и технических наук (Норвегия) исследовали атомную структуру алюминиевых сплавов, чтобы понять механизмы их упрочнения и эволюции при термической/термомеханической обработке.

В более раннем исследовании научный коллектив смоделировал атомную структуру пластин/частиц из атомов меди, магния и серебра, которая была встроена в алюминиевую матрицу. Это позволило получить новые данные о напряженно-деформированном состоянии частиц/пластин, более детально описать механизмы их формирования в сплаве при термической и термомеханической обработке, а также установить причины уникальных механических свойств Al-Cu-Mg-Ag сплавов.

В новой работе ученые исследовали структуру границ между пластиной/частицей и алюминиевой матрицей, в результате чего обнаружили взаимосвязь структурной согласуемости пластин/частиц различной толщины с матрицей и ориентацией границ пластин, а также скоплением вдоль них легирующих элементов — атомов меди.

«Сплав системы Al-Cu-Mg-Ag применяется в авиастроении для изготовления обшивки крыла и фюзеляжа, работающих при повышенных температурах, а также может использоваться для легкого бронирования спецтехники. Полученные фундаментальные знания будут способствовать переходу к новым технологиям производства алюминиевых сплавов с улучшенным комплексом механических свойств для изготовления деталей и узлов воздушных транспортных средств нового поколения», — рассказывает руководитель проекта РНФ Марат Газизов, кандидат технических наук, старший научный сотрудник Лаборатории механических свойств наноструктурных и жаропрочных материалов НИУ БелГУ.

Source:  Пресс-служба РНФ

News article publications

Found 

Read also

Антипов Евгений Викторович
https://colab.ws/researchers/R-31196-0EA95-FM19Q https://orcid.org/0000-0002-8886-8829 https://www.scopus.com/authid/detail.uri?authorId=7102236080 https://www.webofscience.com/wos/author/record/A-4138-2014
Materials Science
18 November 2025
Предсказаны новые галогениды для солнечной и водородной энергетики
Ученые обнаружили 67 новых соединений галогенов (хлора, брома, фтора и иода), которые потенциально могут существовать в двумерном виде, что открывает широкие перспективы их применения в прикладных задачах, например, при создании приборов для преобразования солнечной энергии. Проанализировав эти вещества, авторы выяснили, что некоторые из них способны извлекать из воды водород под действием солнечного света. Водород — перспективное топливо для «зеленой» энергетики, и обнаруженные соединения позволят удешевить его получение в три раза.
"Green" chemistry
Energy industry
Materials Science
18 March 2024
Высокоэнергичные ионы превратили графен в наноалмазы
Ученые получили стабильный материал, состоящий из графена и наноалмазов, облучив многослойный графен быстрыми тяжелыми ионами. Возможность управлять механическими свойствами нового наноструктурированного материала в сочетании с легкостью и гибкостью графена открывает перспективы для его использования в космической авиации, автомобильной промышленности и медицинских устройствах.
Materials Science
Mechanics of materials
Mechanochemistry
17 March 2024
Тугоплавкие сплавы позволят выдерживать температуры до 1000°С
Ученые доказали, что жаростойкость и прочность тугоплавких сплавов не зависят от количества входящих в их состав компонентов, как считалось ранее. Самую высокую жаростойкость при 1000°С показал сплав из трех металлов, а именно ниобия, титана и хрома, тогда как лучшую прочность продемонстрировал сплав из ниобия и хрома. Это открытие позволит разрабатывать перспективные сплавы для производства двигателей нового поколения, не требующих систем охлаждения.
High temperature materials
Materials Science
Metals and their alloys
15 March 2024
Новый класс материалов ускорит разработку безопасных аккумуляторов
Химики нашли новый класс материалов, который сможет ускорить разработку мультивалентных металл-ионных аккумуляторов. В отличие от литий-ионных аккумуляторов, такие накопители будут безопаснее в эксплуатации и значительно дешевле.
"Green" chemistry
Chemical technology
Materials Science
18 February 2024
Сплав никеля, марганца, олова и меди сделает холодильники экологичнее
Ученые выяснили, что сплав никеля, марганца, олова и небольшого количества меди под действием магнитных полей (при разовом включении/выключении магнитного поля) практически необратимо охлаждается на 13°С. Авторы предложили использовать эту особенность в гибридных системах охлаждения бытовых приборов, например холодильников. Такие системы комбинируют различные методы охлаждения для достижения более эффективной и экологически устойчивой работы.
Materials Science
Mechanics of materials
Metals and their alloys
2 February 2024