7 December 2021, 17:00

Ученые рассчитали, как получить мощные испускатели электронов для микроскопов и ускорителей частиц

Российские ученые представили математическую модель, которая объяснила, как можно на несколько порядков повысить плотность тока холодной полевой эмиссии. В результате последней удается получить поток электронов без дополнительной энергии при воздействии на особый материал внешнего электрического поля. Расчеты авторов помогут разработать сильноточные и надежные источники для мощных ускорителей частиц, микроскопов, терагерцовых и СВЧ-устройств, кинескопов и других приборов. Результаты работы, поддержанной грантом Российского научного фонда (РНФ), опубликованы на страницах Journal of Applied Physics.

Ученые рассчитали, как получить мощные испускатели электронов для микроскопов и ускорителей частиц
Тетродная вакуумная лампа
Source: Jim Pickett

Устройства вроде электронных микроскопов, ускорителей частиц и прочих мощных агрегатов требуют больших потоков электронов, многократно превышающих те, что протекают внутри наших гаджетов и по проводам домашней бытовой техники. За испускание электронов в них отвечают эмиттеры — твердые материалы или жидкости, способные при приложении внешнего электрического поля высвобождать электроны.

Особый интерес представляют вакуумные резонансные туннельные триоды и тетроды. Они не требуют много энергоресурсов, поскольку испускают холодные электроны, то есть не приобретающие дополнительную энергию при выходе из материала. Структуры-эмиттеры довольно компактные, но работают с большой эффективностью. Устройство триода очень простое: анод, от которого электроны идут к другому компоненту системы — катоду, и между ними управляющая сетка. На нее подают внешний усиливаемый работой триода сигнал. В тетроде добавляется еще одна сетка, экранирующая: при подаче на нее напряжения электроны разгоняются еще больше.

«Для разных задач нужен ток частиц с определенными характеристиками, что можно настраивать как при создании сеток, так и в процессе работы, изменяя внешние сигналы и поля. Часто бывает нужно, чтобы поток был более плотным, то есть с единицы поверхности выходило больше электронов. Мы придумали, как это можно сделать, не меняя устройства триода или тетрода», — рассказывает Михаил Давидович, доктор физико-математических наук, профессор кафедры радиотехники и электродинамики Саратовского национального исследовательского государственного университета имени Н. Г. Чернышевского (Саратов).

Сотрудники Саратовского национального исследовательского государственного университета имени Н. Г. Чернышевского (Саратов) и Первого Московского государственного медицинского университета имени И. М. Сеченова (Москва) представили модели для расчета тока электронов в триоде и тетроде, где сетки сделаны из углеродных нанотрубок.

В основе механизма прохождения частиц в этих системах лежит туннелирование: электрон встречает на своем пути энергетический барьер, то есть, чтобы перебраться через него на другую сторону, он должен обладать энергией выше той, которую имеет. В нашем классическом реальном мире это сродни попытке пробиться сквозь бетонную стену, но в квантовом мире (с учетом приложения к управляющей сетке напряжения) это возможно.

Предложенная модель имеет три барьера и две ямы между ними. Преодолев один барьер, электроны попадают в энергетическую яму, созданную сеткой, но из-за особенностей квантового мира они не упадут на дно: частички будут колебаться примерно на одном уровне. При этом «ресурсов» осталось меньше, энергия как прошедших электронов, так и всей системы истощается — в результате новая стена становится чуть ниже. И вот на сетку снова подается напряжение, запускается туннелирование через следующий барьер в другую яму, и так до тех пор, пока электрон не достигнет конечной точки — катода.

«Эти процессы можно сравнить с бегом с препятствиями. Проще преодолеть на инерции десяток последовательных барьеров, чем один. Так и в случае электрона — чем больше препятствий (а на самом деле ям, создаваемых сетками), тем эффективнее и быстрее его прохождение в триоде и тетроде. Наша модель подробно описывает происходящее, и ее можно использовать при разработке мощных эмиттеров для устройств самого разного предназначения», — подводит итог руководитель проекта профессор, доктор физико-математических наук Ольга Глухова.

Source:  Пресс-служба РНФ

News article publications

Found 
Share

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.

Read also

Российский физик предсказал существование второго бозона Хиггса
Его открытие может заполнить целый ряд пробелов в Стандартной модели, которая описывает взаимодействие всех элементарных частиц, а также, вероятно, приблизит к разгадке тайны темной материи.
Mathematical modeling
Quantum Physics
20 April 2023
Разработана модель, описывающая механизмы формирования плазменных нитей
Ученые разработали самосогласованную электродинамическую модель, которая описывает условия формирования в микроволновых разрядах атмосферного давления плазменных филаментов — тонких нитей в газе с повышенной электронной плотностью и температурой. Такие разряды используются в плазмохимии для высокоэффективного синтеза азотных удобрений, водорода, а также объемных наноструктур, например углеродных нанотрубок, широко используемых в электронике и оптике. Предложенная модель поможет усовершенствовать микроволновые источники плазмы атмосферного давления.
Electrodynamics
Plasma Physics
Synthesis
27 March 2024
Микроволновые разряды помогут управлять сверхзвуковыми летательными аппаратами
Физики и механики разработали теоретическую модель, описывающую процесс формирования нитевидных микроволновых разрядов в газах. В этом случае газ нагревается до температур порядка 830°С и выше, и в нем формируется большое количество заряженных и возбужденных частиц. Это явление можно использовать в аэродинамике и космонавтике, чтобы воздействовать на потоки газа вблизи летательных аппаратов и тем самым управлять полетом, поскольку эти структуры влияют на скорость и траекторию движения аппарата.
Cosmonautics
Mathematical modeling
Plasma Physics
Space
22 March 2024
Разработан «полуслепой» метод описания квантовых систем
Ученые предложили подход, который позволяет определять состояние квантовой системы, зная лишь часть данных от общего их числа, необходимого для полного описания этой системы. Разработанный метод может помочь предсказывать физические и химические процессы, связанные со свойствами квантовых систем. Помимо использования в химии и физике, предсказание квантовых процессов поможет ученым реализовать алгоритмы для самых различных отраслей — от дизайна лекарств до моделирования материалов.
New techniques
Quantum Chemistry
Quantum Physics
8 February 2024
Предложен подход, позволяющий получать световые импульсы разной формы
В обычных световых импульсах напряженность электромагнитного поля меняется со временем по синусоиде, то есть по кривой в виде попеременно опускающихся и поднимающихся дуг. Ранее считалось, что иные формы поля невозможны, но физики предложили теоретический подход, который позволяет получать световые импульсы прямоугольной или треугольной формы. Согласно расчетам, такие изменения формы возникают при взаимодействии импульса с определенными средами с неравномерной плотностью. Треугольные и прямоугольные импульсы могут применяться в квантовых компьютерах для управления кубитами — элементами, отвечающими за хранение и обработку информации.
Laser physics
Optics
Quantum Physics
Theoretical physics
1 February 2024
Цифровые астроциты улучшили память нейросети на 20%
Ученые разработали первую в мире нейронную сеть, полностью построенную на принципах взаимодействия клеток реального головного мозга. Так, модель воспроизводит передачу сигналов не только между нервными клетками, но и между нейронами и астроцитами — вспомогательными клетками мозга. Эксперименты показали, что «подключение» астроцитов в работу нейросети улучшает ее способность «запоминать», то есть воспроизводить ранее полученную информацию, на 20%.
Cognitive Sciences
Mathematical modeling
Neural networks
30 January 2024