Сочетание оксидов и углеродных нанотрубок поможет улучшить суперконденсаторы
Коллектив ученых Санкт-Петербургского университета и Омского научного центра Сибирского отделения РАН создал композитный материал из многослойных углеродных нанотрубок, оксида марганца и рения. Полученный материал позволит повысить энергоэффективность суперконденсаторов, используемых в альтернативной энергетике.
Углеродные нанотрубки — перспективный материал, представляющий собой углеродную цилиндрическую структуру из графена. Они отличаются высокой прочностью и плотностью, при этом их толщина менее человеческого волоса. Можно сказать, что это «материалы будущего», ведь даже небольшая (всего 1–3% от общего объема) добавка нанотрубок может значительно улучшить характеристики материала.
Нанотрубки бывают одностенные и многослойные. Последние лучше проводят ток, а их поверхность химически инертна, а потому их считают перспективными материалами для производства суперконденсаторов, литий-ионных аккумуляторов и других элементов.
Ученые СПбГУ разработали новые способы повышения эффективности суперконденсаторов за счет использования комбинации многослойных нанотрубок и оксидов переходных металлов. Один из подходов заключается в увеличении площади поверхности, обеспечивающей энергетическую эффективность электрода. Обычно в качестве основы электродов промышленных суперконденсаторов используют различные виды углерода (сажа, активированный углерод, технический углерод, графен, углеродные нанотрубки и другие варианты), обладающие высокой удельной площадью поверхности. В последнее время для повышения энергоэффективности и стабильности суперконденсаторов ученые разрабатывают гибридные материалы, которые накапливают энергию как за счет двойного электрического слоя, так и благодаря обратимым электрохимическим процессам, протекающим на поверхности электродов при наличии, например, оксидов переходных металлов, таких как оксиды кобальта, ванадия, рутения и других. Как отмечает один из авторов разработки, научный сотрудник СПбГУ Петр Корусенко, сегодня перспективным вариантом таких переходных металлов являются оксиды марганца, обладающие высокой удельной емкостью, низкой токсичностью и себестоимостью производства.
«Мы предлагаем композитный материал на основе многослойных углеродных нанотрубок и оксида марганца с добавкой тяжелого металла рения. Полученный композит имел высокие показатели емкости, то есть накапливаемого заряда на единицу массы, это одна из главных характеристик подобных материалов. Чем больше заряда может накопить композит за короткие сроки и его отдать, тем больше его эффективность», — рассказывает научный сотрудник кафедры электроники твердого тела СПбГУ Петр Корусенко.
Во время эксперимента ученые наносили на поверхность нанотрубок слои оксида марганца, затем проводили температурные обработки для кристаллизации и формирования наночастиц. Это позволило увеличить удельную емкость более чем в два раза, однако данный показатель быстро снижался. Повысить электрохимические свойства удалось за счет оптимальной температуры обработки композита и последующего добавления оксида переходного металла рения. Как показали эксперименты, оксид рения закреплялся преимущественно вблизи наночастиц марганца и позволил увеличить долю электрохимически активного оксида марганца MnO2 путем доокисления MnOх.
Благодаря этому ученым удалось сделать материал более стабильным при циклических испытаниях заряда-разряда. Результат обусловлен сочетанием свойств оксидов и углеродных нанотрубок. С одной стороны, это приводит к увеличению вклада обратимых электрохимических процессов в удельную емкость, с другой — позволяет заметно увеличить вклад двойного электрического слоя при накоплении заряда.
Полученные учеными СПбГУ результаты позволят значительно повысить эффективность источников импульсной мощности, которые генерируют большое количество энергии в короткий срок. Сегодня суперконденсаторы используются в альтернативной энергетике, транспортных системах, накопителях энергии в домашних хозяйствах и других отраслях науки и техники. Повышение их энергоэффективности важно для многих сфер, поскольку генерация мощного импульса энергии — главная задача суперконденсаторов.