11 апреля 2023, 18:00 Ольга Кедук

Математики научили ИИ прогнозировать экономические кризисы и управлять ими

Математическое моделирование
Экономика
Машинное обучение

Российские ученые совместно с зарубежными коллегами обучили искусственный интеллект выявлять внутри экономических моделей скрытые нерегулярные колебания, которые могут быть предвестниками кризисов, и подбирать способы управления ими. Разработанный подход позволит использовать возможности искусственного интеллекта при принятии экономических решений с учетом скрытых факторов.

Математики научили ИИ прогнозировать экономические кризисы и управлять ими
Источник: Scott Graham / Unsplash

На состояние экономики влияет множество различных факторов. Иногда это могут быть совсем неожиданные и редкие события, так называемые «черные лебеди». Одно из них — появление нового вируса — в 2020 году привело к сокращению мировой экономики на 4,3%, что в 2,5 раза больше, чем во время глобального финансового кризиса 2008-2013 годов. При этом нарушить стабильность системы могут не только глобальные вызовы, такие как пандемия, изменение климата, разработка и массовое внедрение новых технологий, изменения структуры экономики, но и менее масштабные явления. Вызывать эффект «черного лебедя» способны факторы, уже существующие внутри самой системы, предопределенные ее конструкцией, сложными взаимосвязями элементов и механизмом функционирования — например, сопровождающие периоды подъема и спада в экономике или возникновение финансовых пузырей. Подобные критические состояния и даже предвестники катастроф до определенного момента могут быть скрыты и проявляться без явного влияния внешних случайных факторов. Однако, проявляясь, они способны привести к труднопрогнозируемому, в том числе хаотическому поведению системы. Теория скрытых колебаний, недавно предложенная учеными, предполагает, что такие состояния можно выявлять еще до того, как они успели повлиять на работоспособность механизма, а также подбирать управленческие решения, которые сведут к минимуму негативные последствия хаотических процессов и помогут избежать кризиса.

Коллектив ученых из Санкт-Петербургского государственного университета (Санкт-Петербург), Института проблем машиноведения РАН (Санкт-Петербург) и Санкт-Петербургской школы физико-математических и компьютерных наук Национального исследовательского университета Высшая школа экономики (Санкт-Петербург) совместно с зарубежными коллегами испытали метод выявления нерегулярных колебаний и управления ими в экономических системах. В своем исследовании авторы использовали известную модель перекрывающихся поколений нобелевских лауреатов Пола Самуэльсона (1970) и Питера Даймонда (2010). Она воспроизводит процесс развития общества с двумя поколениями – молодых и пожилых, в условиях некоторой экономики в течение времени жизни этих поколений. Также была рассмотрена модель ценообразования с учетом территориального расположения рынков с сетью связей. С ее помощью описали сложную хаотическую динамику формирования цен на продовольственных рынках в течение длительного времени, которая характерна, например, для рыбных рынков.

«Мы применили новые аналитико-численные методы изучения динамики и алгоритмы искусственного интеллекта в рамках концепций теоретической экономики. Основываясь на традиционных моделях со сложной динамикой, мы сформулировали для искусственного интеллекта задачу прогнозирования и управления поведением этих моделей. Вклад человека в этой работе все еще превалирует над ролью компьютера: мы ставим задачу и адаптируем аналитические методы, чтобы их воспринимал вычислительный алгоритм, сообщаем начальные данные и приблизительную область, в которой прогнозируется решение. Но помощь компьютера огромна, потому что человеку такое количество данных не просчитать в обозримом времени», — рассказывает соавтор исследования, поддержанного грантом РНФ, Татьяна Алексеева, кандидат физико-математических наук, доцент, заместитель руководителя департамента математики Санкт-Петербургской школы физико-математических и компьютерных наук НИУ ВШЭ, академический руководитель образовательной программы «Экономика» Санкт-Петербургской школы экономики и менеджмента НИУ ВШЭ.

Для выполнения расчетов ученые использовали эволюционные алгоритмы и машинное обучение с подкреплением — направления искусственного интеллекта, которые предполагают самообучение компьютерной программы в процессе решения задачи. Алгоритм не просто предлагает тот или иной вариант, но и учитывает свой прошлый опыт успешных или ошибочных ответов. Чтобы обработать весь объем информации, ученые использовали самые современные на момент проведения исследования (2020-2021 гг.) суперкомпьютеры в Европе. Машины из Национального суперкомпьютерного центра в Остраве (Чехия) затратили на решение задачи 48 часов, в то время как обычному компьютеру потребовалось бы для этого более 17 лет.

В рамках исследования ученые рассмотрели теоретически смоделированные экономические системы, однако предложенный ими подход применим в том числе для анализа реальных макро- или микроэкономических явлений. Это позволяет расширить набор вычислительных технологий и точнее их настраивать для прогнозирования динамики показателей в задачах разных участников экономической деятельности. Например, дает возможность предвидеть, какими могут быть колебания курсов валют или процентной ставки в течение конкретного периода времени. Если диапазон колебаний становится слишком широким, то искусственный интеллект поможет подобрать управляющее действие и его степень, позволяя сузить этот диапазон, уменьшить число рисков и сделать ситуацию более предсказуемой, чтобы она не привела к кризису.

«Алгоритм не дает готового ответа и, конечно, не позволяет полностью прогнозировать экономику. Люди, принимающие решения, во многом руководствуются своей профессиональной интуицией. Но она опирается на их опыт и знания и разные вспомогательные инструменты: теоретические модели, поведение и характер показателей, численные эксперименты. Наш подход пополняет спектр инструментов, которые делают сложную, многогранную, с большим количеством разнообразных связей систему экономики более предсказуемой, управляемой и, тем самым, более понятной для человека», — рассказывает автор теории скрытых колебаний, руководитель проекта, поддержанного грантом РНФ, Николай Кузнецов, доктор физико-математических наук, член-корреспондент РАН, руководитель Ведущей научной школы Российской Федерации в области математики и механики, заведующий кафедрой прикладной кибернетики СПбГУ, заведующий лабораторией информационно-управляющих систем ИПМаш РАН.

Предложенный подход мультидисциплинарен и применим не только в экономике, но и в других областях, где существуют скрытые колебания, способные привести к нарушению стабильной работы системы, а в критичных случаях даже к ее разрушению. Для их выявления математики сотрудничают со специалистами по технологиям искусственного интеллекта и учеными из разных предметных областей. Аналогичные исследования уже были проведены в электронике и энергетике, в дальнейшем авторы планируют протестировать разработанный подход в сфере медицины, социологии и инженерных наук.

Источник:  Пресс-служба РНФ

Публикации из новости

Читайте также

Новая матмодель позволит повысить эффективность бурения скважин
Система способна представить удобную выжимку самой важной информации из разрозненных геофизических данных. Так можно не только охарактеризовать новую скважину, но и скорректировать направление ее бурения
Геофизика
Инженерная геология
Математическое моделирование
Машинное обучение
12 июля 2023
Нейросеть помогла рассчитать температуру Аррениуса по двум параметрам материала
Это позволит эффективнее контролировать процесс затвердевания расплавов и применим для различных типов материалов — металлических, силикатных, боратных и органических
Искусственный интеллект
Математическое моделирование
Материаловедение
Машинное обучение
20 февраля 2023
Математическая модель ускорит проектирование теплозащиты космических аппаратов
Российские ученые разработали математическую модель, описывающую поведение разреженных газов и плазмы вблизи поверхности твердого тела. Эта модель поможет при проектировании космических аппаратов и микроустройств, используемых, например, в электронике.
Инженерия
Космос
Математическое моделирование
10 сентября 2023
Учёные разработали модель растворителей для магний-ионных аккумуляторов
Физики из МФТИ и ОИВТ РАН показали, как корректно рассчитывать эффективность аккумуляторов из новых материалов методом компьютерного моделирования. Они предложили теоретическую модель взаимодействия проводящих ионов с окружающим растворителем и электродом. Методику можно использовать для поиска оптимальных растворителей и точного расчета характеристик аккумуляторов.
Квантовая химия
Математическое моделирование
Электрохимия
31 августа 2023
Матмодель сделает авто- и авиатренажеры точнее и быстрее
Адаптивная цифровая система управления повысит реалистичность симуляции и поможет уберечь устройства от поломок из-за перегрузок
Математическое моделирование
Машиноведение
Управление
9 августа 2023
Новая модель описала процесс создания дугового разряда в аргоне и гелии
Она также подробно описывает процесс «рождения» в газовой плазме частиц углерода, из которых в дальнейшем собираются применяемые в медицине и электронике наноматериалы
Математическое моделирование
Нанотехнологии
Углеродные материалы
25 июля 2023