1 June 2023, 19:00 Виталина Власова

«Нанорасчески» позволили увеличить мощность терагерцовых излучателей в 50 раз

Физики усовершенствовали излучатели терагерцовых волн за счет комбинации встречно-штыревых электродов, по форме напоминающих миниатюрную расческу, и фотопроводящей подложки на основе соединений галлия и индия с мышьяком. Такое сочетание позволило устройству эффективнее преобразовывать энергию лазера в терагерцовое излучение, благодаря чему мощность устройства увеличилась в 50 раз. Терагерцовые волны безопасны для человека, а также хорошо проникают сквозь живые ткани и многие природные и искусственные материалы, благодаря чему генерирующие их устройства могут использоваться в медицине, для сканирования багажа и экологического мониторинга.

«Нанорасчески» позволили увеличить мощность терагерцовых излучателей в 50 раз
Устройство фотопроводящего терагерцового излучателя: по краям изображены контакты (основные электроды) фотопроводящей антенны, в центре — встречно-штыревые электроды; фон — фотопроводящая подложка на основе квантово-точечной гетероструктуры InAs/GaAs

Электромагнитное излучение, находящееся в диапазоне между инфракрасным и микроволновым, называют терагерцовым. Долгое время источники и приемники этого «промежуточного» диапазона частот были недостаточно эффективными. Однако за последние двадцать лет ученые создали ряд излучателей и детекторов специально для терагерцового излучения, поскольку его можно использовать в медицине, экологическом мониторинге, системах сканирования багажа, а также материаловедении. Так, например, на сегодняшний день тестируются «просвечивающие» медицинские приборы на основе терагерцового излучения: устройства для диагностики рака кожи, отслеживания состояния тканей после ожогов и выявления зубного кариеса. Терагерцовые волны абсолютно безопасны для человека, поэтому устройства, их излучающие, потенциально смогут заменить рентгеновские аппараты, ионизирующее излучение которых способно привести к повреждению ДНК и, следовательно, мутациям.

Ученые из Института сверхвысокочастотной полупроводниковой электроники имени В.Г. Мокерова РАН (Москва), Института общей физики РАН (Москва), Бирмингемского университета (Великобритания), Университета ИТМО (Санкт-Петербург), МГТУ имени Н.Э. Баумана (Москва), Московского физико-технического института (Долгопрудный), а также Астонского Университета (Великобритания) разработали устройство, которое эффективнее, чем существующие аналоги, генерирует импульсное терагерцовое излучение широкого спектра частот посредством фотопроводящей антенны. Принцип действия антенны основан на том, что воздействие лазерного излучения на ее полупроводниковую подложку одновременно с приложением внешнего напряжения приводит к генерации терагерцового импульса.

Чтобы для генерации терагерцового излучения было достаточно лазерных импульсов малой мощности, ученые улучшили фотопроводящую антенну, присоединив к ее контактам симметричные золотые встречно-штыревые электроды, по форме напоминающие расческу с очень тонкими и часто расположенными (на расстоянии порядка нескольких сотен нанометров) элементами, называемыми пальцами. Такая форма электродов позволяет значительно увеличить запасенную в излучателе энергию за счет увеличения его емкости. Кроме того, авторы разместили антенну на подложке из соединений индия и галлия с мышьяком (InAs/GaAs), которые выполняли роль квантовых точек — структур, участвующих в переносе электрического заряда на встречно-штыревые электроды.

Физики сравнили мощность улучшенного излучателя с исходным — не содержащим встречно-штыревых электродов, но использующим аналогичную фотопроводящую подложку. Для этого оба устройства возбуждали ультракороткими лазерными импульсами, а терагерцовое излучение регистрировали приемником на основе фотопроводящей антенны. Оказалось, что совместное использование квантово-точечных структур и встречно-штыревых электродов позволило увеличить мощность излучения антенны в 50 раз.

«Предложенная нами технология позволит сделать источники терагерцовых волн доступнее для практических применений в медицине и технике, поскольку она легко масштабируема для производства. Более того, данная разработка не требует сверхмощных дорогих лазеров для генерации терагерцовых волн, что также будет существенным преимуществом. В дальнейшем мы продолжим разработку новых источников широкополосного импульсного терагерцового излучения с еще более усовершенствованными характеристиками», — рассказывает руководитель проекта, поддержанного грантом РНФ, Дмитрий Пономарев, кандидат физико-математических наук, заместитель директора по научной работе ИСВЧПЭ РАН, ведущий научный сотрудник ИОФ РАН.

Source:  Пресс-служба РНФ

News article organizations

News article publications

Read also

Атомы примесей в полупроводниках могут стать кандидатами в кубиты
Физики выяснили, что эти атомы способны формировать долгоживущие устойчивые квантовые состояния, вероятно, достаточно устойчивые к внешним факторам, — именно это и нужно для кубитов в квантовых компьютерах
Materials Science
Quantum Physics
24 July 2023
Квантовую запутанность предложили генерировать в сверхпроводнике
Описанный эффект интересен для фундаментальной науки, поскольку позволяет управлять квантовыми состояниями заряженных частиц с помощью небольших вариаций магнитного поля
Materials Science
Quantum Physics
Superconductivity
5 July 2023
Термомеханическая обработка помогла создать транзистор из углеродной нанотрубки
Такое воздействие позволило тонко настроить электронные свойства материала
Materials Science
Molecular modeling
Nanoelectronics
Nanotechnology
Quantum Physics
28 December 2021
Предсказаны новые галогениды для солнечной и водородной энергетики
Ученые обнаружили 67 новых соединений галогенов (хлора, брома, фтора и иода), которые потенциально могут существовать в двумерном виде, что открывает широкие перспективы их применения в прикладных задачах, например, при создании приборов для преобразования солнечной энергии. Проанализировав эти вещества, авторы выяснили, что некоторые из них способны извлекать из воды водород под действием солнечного света. Водород — перспективное топливо для «зеленой» энергетики, и обнаруженные соединения позволят удешевить его получение в три раза.
"Green" chemistry
Energy industry
Materials Science
18 March 2024
Высокоэнергичные ионы превратили графен в наноалмазы
Ученые получили стабильный материал, состоящий из графена и наноалмазов, облучив многослойный графен быстрыми тяжелыми ионами. Возможность управлять механическими свойствами нового наноструктурированного материала в сочетании с легкостью и гибкостью графена открывает перспективы для его использования в космической авиации, автомобильной промышленности и медицинских устройствах.
Materials Science
Mechanics of materials
Mechanochemistry
17 March 2024
Тугоплавкие сплавы позволят выдерживать температуры до 1000°С
Ученые доказали, что жаростойкость и прочность тугоплавких сплавов не зависят от количества входящих в их состав компонентов, как считалось ранее. Самую высокую жаростойкость при 1000°С показал сплав из трех металлов, а именно ниобия, титана и хрома, тогда как лучшую прочность продемонстрировал сплав из ниобия и хрома. Это открытие позволит разрабатывать перспективные сплавы для производства двигателей нового поколения, не требующих систем охлаждения.
High temperature materials
Materials Science
Metals and their alloys
15 March 2024