15 June 2023, 22:00

«Горючий лед» предложили использовать для тушения пожаров

«Горючий лед» предложили использовать для тушения пожаров
Source: Пресс-служба Минобрнауки России

Газовые гидраты — это соединения из газа в ледяной и водной оболочке, которые добывают со дна морей и океанов. Их также называют замерзшим топливом будущего или горючим льдом. Одно из направлений их использования — локализация и подавление возгораний.

«Главная задача системы пожаротушения — снизить температуру, вытеснить кислород из зоны горения и предотвратить доступ к продуктам сгорания. На сегодняшний день широко используются газовые, жидкостные и пенные системы. То есть основным сырьем для успешной ликвидации возгорания является лед, вода и инертный газ. Все это есть в составе газового гидрата: инертный газ вытесняет кислород из зоны горения, а лед позволяет снизить температуру в очаге пожара и прекратить распространение фронта горения», — говорит руководитель лаборатории тепломассопереноса, профессор Научно-образовательного центра И. Н. Бутакова Павел Стрижак.

Ученые провели более 200 экспериментов по локализации и подавлению горения древесины, керосина, бензина, дизельного топлива, спирта, сырой и очищенной нефти, индустриальных масел, разных марок угля, отходов углеобогащения и природных газовых гидратов метана. Для этого они воспроизвели условия возгорания в четырех наиболее распространенных ситуациях: неосторожное обращение с огнем, нарушение правил эксплуатации нагревательного оборудования, замыкание электрических сетей и локальные источники пожара. Эксперименты проводились как с очагами в помещениях, так и на открытой местности.

«Мы установили, что для блокирования и подавления горения в состав гидрата должен входить инертный газ. Самые доступные по стоимости и эффективности — углекислый газ и фреон. Эксперименты проводились с газовым гидратом в форме порошка и таблетированных образцов. Его мы сбрасывали на очаг горения сверху и делали из него заградительную полосу. Результаты показали эффективность технологии. Стоит уточнить, что это ранние стадии исследования и работы проводятся с малыми очагами возгораний и гидратов. Главная задача — доказать эффективность технологии», — добавляет инженер-исследователь Исследовательской школы физики высокоэнергетических процессов Никита Шлегель.

На основе экспериментальных данных ученые разработали физические и математические модели локализации и подавления горения разных веществ и материалов, а также начали работы по созданию гидратов, в состав которых входят поверхностно-активные вещества. При диссоциации такой гидрат, помимо вытеснения кислорода из зоны горения и снижения температуры, позволяет создать на его поверхности пену. Она является блокиратором кислорода и способствует локализации горения и термического разложения материала.

В будущем авторы планируют разработать несколько устройств, в которых получаемый гидрат при соприкосновении с горящим материалом будет эффективно блокировать и локализовать горение.

«Основная причина, почему газовые гидраты до сих пор не используют для тушения пожаров, — отсутствие данных о том, в каких условиях горения они эффективны, и технологий для транспортировки, хранения и подачи гидрата в зону горения. Сейчас эти вопросы носят основной научный и практический интерес и именно этим заняты сотрудники нашей лаборатории», — поясняет Павел Стрижак.

News article publications

Read also

Предложен новый оптический подход к тепловой стимуляции отдельной клетки
Для этого ученые использовали частицы поликристаллического алмаза, которые поглощали свет лазера и в результате становились локальным источником тепла. Цветовые центры стали нанотермометрами за счет спектральных изменений
Materials Science
Nanotechnology
Thermodynamics
Thermometry
26 May 2023
Предсказаны новые галогениды для солнечной и водородной энергетики
Ученые обнаружили 67 новых соединений галогенов (хлора, брома, фтора и иода), которые потенциально могут существовать в двумерном виде, что открывает широкие перспективы их применения в прикладных задачах, например, при создании приборов для преобразования солнечной энергии. Проанализировав эти вещества, авторы выяснили, что некоторые из них способны извлекать из воды водород под действием солнечного света. Водород — перспективное топливо для «зеленой» энергетики, и обнаруженные соединения позволят удешевить его получение в три раза.
"Green" chemistry
Energy industry
Materials Science
18 March 2024
Высокоэнергичные ионы превратили графен в наноалмазы
Ученые получили стабильный материал, состоящий из графена и наноалмазов, облучив многослойный графен быстрыми тяжелыми ионами. Возможность управлять механическими свойствами нового наноструктурированного материала в сочетании с легкостью и гибкостью графена открывает перспективы для его использования в космической авиации, автомобильной промышленности и медицинских устройствах.
Materials Science
Mechanics of materials
Mechanochemistry
17 March 2024
Тугоплавкие сплавы позволят выдерживать температуры до 1000°С
Ученые доказали, что жаростойкость и прочность тугоплавких сплавов не зависят от количества входящих в их состав компонентов, как считалось ранее. Самую высокую жаростойкость при 1000°С показал сплав из трех металлов, а именно ниобия, титана и хрома, тогда как лучшую прочность продемонстрировал сплав из ниобия и хрома. Это открытие позволит разрабатывать перспективные сплавы для производства двигателей нового поколения, не требующих систем охлаждения.
High temperature materials
Materials Science
Metals and their alloys
15 March 2024
Новый класс материалов ускорит разработку безопасных аккумуляторов
Химики нашли новый класс материалов, который сможет ускорить разработку мультивалентных металл-ионных аккумуляторов. В отличие от литий-ионных аккумуляторов, такие накопители будут безопаснее в эксплуатации и значительно дешевле.
"Green" chemistry
Chemical technology
Materials Science
18 February 2024
Сплав никеля, марганца, олова и меди сделает холодильники экологичнее
Ученые выяснили, что сплав никеля, марганца, олова и небольшого количества меди под действием магнитных полей (при разовом включении/выключении магнитного поля) практически необратимо охлаждается на 13°С. Авторы предложили использовать эту особенность в гибридных системах охлаждения бытовых приборов, например холодильников. Такие системы комбинируют различные методы охлаждения для достижения более эффективной и экологически устойчивой работы.
Materials Science
Mechanics of materials
Metals and their alloys
2 February 2024