22 December 2021, 2:55

Ученые выяснили, что общего у камчатского вулкана и Норильского месторождения

Российские ученые совместно с немецкими коллегами вплотную подошли к разгадке путей образования платиновых руд — одних из самых редких и вместе с тем ценных компонентов земной коры. Для этого они применили нестандартный подход: изучили не сами месторождения, а современные вулканические системы Камчатки, которые являются «природными лабораториями» геохимических процессов. Исследователи проанализировали образцы лавы вулкана Толбачик из извержений разных лет и выяснили, как по мере эволюции магматической системы менялось содержание элементов платиновой группы. Статья опубликована в журнале Frontiers in Earth Science. Исследования поддержаны грантом Российского научного фонда (РНФ).

Ученые выяснили, что общего у камчатского вулкана и Норильского месторождения
Карта Камчатки и прилегающих территорий

Благодаря своим свойствам — тугоплавкости, химической устойчивости, высокой электропроводности, способности ускорять химические процессы — металлы платиновой группы необходимы в химии, промышленности, медицине и электронике. Чтобы обеспечить платиноидами производства, в мире ежегодно добывают миллионы тонн руды. Через какое-то время ресурсы известных месторождений будут исчерпаны, а для того, чтобы открывать новые залежи руд, геологам необходимо понимать процессы, которые их формируют. 

Месторождения платиноидов (рутений, родий, палладий, осмий, иридий, платина) чаще всего связаны с интрузиями — застывшими на глубине магматическими телами. Как образуются месторождения, никто никогда не видел: во-первых, это длительный процесс, а во-вторых, он скрыт от глаз исследователей под толщей других пород. Поэтому геологам приходится восстанавливать ход событий по косвенным признакам, изучая другие природные объекты, в которых реализуются подобные механизмы, и как мозаику собирать общую картину.

То, как ведут себя в магматическом расплаве элементы платиновой группы, во многом зависит от того, сколько в этом расплаве серы и в какой она химической форме. В случае, если магма окислена, сера в ней существует в виде хорошо растворимого сульфата (SO42-). В более восстановленных магмах сера переходит в форму сульфида (S2-), растворимость которого почти на порядок ниже. В этом случае расплав может разделиться на две несмешивающиеся жидкости — силикатную и сульфидную. Последняя как бы «выкачивает» значительную часть платиноидов из силикатного расплава и концентрирует их в себе. Именно так, по мнению большинства исследователей, образовались уникальные месторождения, например Норильские — крупные и богатые залежи руд.

В лаве камчатского вулкана Толбачик встречаются сульфидные глобулы (небольшие «шарики» сульфидной жидкости), содержащие микроскопические зерна платиновых минералов. Это явление иллюстрирует процесс образования месторождения в миниатюре: расплав разделился на сульфидный и силикатный, и в сульфидную часть ушли платиноиды. В породах Толбачика их слишком мало для промышленной добычи, но, изучая этот объект, ученые могут понять, как формируются платиноносные сульфидные руды.

Геологи из Института вулканологии и сейсмологии ДВО РАН (Петропавловск-Камчатский), Института экспериментальной минералогии РАН (Черноголовка) и Фрайбергского института ресурсных технологий имени Гельмгольца (Германия) изучили лавы Толбачика из извержений разных периодов (от древних до самого последнего в 2013 году) и посмотрели, как менялось в них содержание разных элементов платиновой группы. Это позволило получить более полную картину поведения платиноидов в ходе развития гигантской магматической системы. Оказалось, что содержание палладия — наиболее «чувствительного» к сере среди платиноидов — повышается от более древних пород к более молодым. Из этого можно сделать вывод, что элемент со временем накапливался в силикатных расплавах. Это было бы невозможно, если бы разделение на сульфидную и силикатную жидкость произошло давно, и все это время два расплава сосуществовали в магматической камере. В таком случае палладий был бы извлечен сульфидом и молодые породы оказались бы пустыми. 

«Казалось бы, противоречие: во всех породах мы наблюдаем капли сульфидного расплава. Однако есть простое объяснение: условия кристаллизации магм вулкана Толбачик были пограничными между теми, в которых образуется сульфид, и теми, в которых он будет растворяться. Система как бы балансировала на тонкой нити: в некоторые моменты сульфид начинал выделяться из расплава, но система тут же качалась в противоположную сторону, и сульфид растворялся. Глобулы, которые мы наблюдаем — это те фрагменты сульфида, которые были захвачены другими минералами и потому не растворились», — поясняет Антон Кутырев, кандидат геолого-минералогических наук, старший научный сотрудник лаборатории минералогии Института вулканологии и сейсмологии ДВО РАН.

 

Source:  Пресс-служба РНФ

News article publications

Read also

В разных участках болот выбросы парниковых газов могут отличаться в 150 раз
Ученые выяснили, что в разных участках одного и того же верхового — то есть питаемого осадками — болота выброс парникового газа метана в атмосферу различается примерно в 150 раз. Это связано с тем, что поверхность болот крайне неоднородна: здесь можно выделить несколько микроландшафтов — затопленные участки, низменности, кочки и гряды, поросшие растительностью, — и все они с разной интенсивностью выделяют метан. Такое наблюдение поможет строить более точные модели выбросов парниковых газов и тем самым оценить вклад болот в потепление климата.
Agrophysics
Geology
Geophysics
20 March 2024
Микробы в вечной мерзлоте могут помешать резкому потеплению климата
Ученые выяснили, что высокое разнообразие микроорганизмов, населяющих зону вечной мерзлоты, может значительно снизить скорость потепления атмосферы у поверхности Земли. По мере таяния многолетнемерзлых грунтов микробы начинают выделять метан и, если видов бактерий мало, в определенный момент произойдет массовый выброс этого парникового газа. Высокое же видовое богатство приведет к меньшему — в масштабе нескольких градусов — нагреву воздуха планеты.
Geology
Mathematical modeling
Microbiology
13 December 2023
Геологи экспериментально воспроизвели совместную кристаллизацию алмаза и граната
Геологи экспериментально подтвердили, что при температуре и давлении, аналогичных тем, что наблюдаются на глубинах около 200 километров, может происходить совместный рост алмаза и граната. Этот процесс происходит благодаря взаимодействию граната с углекислыми и водно-углекислыми флюидами — жидкостями, присутствующими в мантии Земли. Кроме того, авторы выяснили, что в среднем скорость роста алмазов в таких случаях составляет от 0,013 до 0,8 микрометров в час в зависимости от температуры. То есть, чтобы получить кристалл массой в один карат (0,2 грамма), потребуется от 4,5 месяцев до 17,5 лет.
Crystal chemistry
Crystallography
Geology
6 December 2023
Древние воды Антарктиды образовали контуритовые дрифты в Центральной Атлантике
Ученые открыли осадочную систему редкого типа в разломе Вима в Центральной Атлантике и описали механизм ее формирования. Авторы показали, что течения донной воды из Антарктики тысячелетиями формировали в долине разлома каналы и намывали осадочные валы. Это наблюдение поможет понять, каким был океан сотни тысяч и миллионы лет назад и как циркулировали его воды, а также прогнозировать изменения, которые могут произойти в будущем.
Geology
Hydrogeology
Oceanology
18 October 2023
Арктические микроорганизмы ускорили образование железомарганцевых отложений
Они восстанавливают, окисляют или накапливают в себе металлы, которые формируют железомарганцевые конкреции — ценный источник сырья для металлургической промышленности
Geology
Microbiology
Ocean Biology
15 March 2023
Самый древний из изученных алмазов обнаружен в Якутии
Его возраст составил порядка 3,6 миллиарда лет, однако он уникален еще и потому, что был обнаружен в нехарактерной для выноса алмазов породе — кимберлитовом оливине
Geology
9 March 2023