25 July 2023, 21:00

Новая модель описала процесс создания дугового разряда в аргоне и гелии

Ученые создали математическую модель, позволяющую подбирать оптимальные условия для получения углеродных наноструктур с помощью плазменного синтеза. Она подробно описывает процесс «рождения» в газовой плазме частиц углерода, из которых в дальнейшем собираются применяемые в медицине и электронике наноматериалы.

Новая модель описала процесс создания дугового разряда в аргоне и гелии
Параметры дугового разряда: (сверху) вольтамперная характеристика, зависимости температуры поверхности электродов, (снизу) концентрации различных типов частиц в зависимости от плотности тока

Во многих отраслях науки и техники сегодня используются нанотехнологии — направления, позволяющие создавать самые разные объекты (частицы, молекулярные комплексы и даже целые устройства), размер которых в миллионы раз меньше миллиметра. Так, например, в медицине наномасштабные объекты используются для доставки лекарств, в материаловедении — для синтеза легко управляемых или так называемых «умных» материалов, в микроэлектронике — для создания миниатюрных процессоров и запоминающих устройств.

Одним из наиболее перспективных методов создания наноструктур считается плазменный синтез с помощью дугового разряда. Этот подход заключается в том, что нужный нанообъект «собирается» из отдельных атомов или молекул с помощью неравновесной плазмы — газа, насыщенного заряженными частицами. Чтобы обогатить газ такими частицами, то есть ионизировать, используют электроды (например, графитовые) — элементы, между которыми протекает электрический ток. Когда ток, поступая от одного электрода к другому, проходит через газ, возникает разряд, по форме напоминающий дугу. Эксперименты показали, что этот газовый разряд сильно нагревает поверхности электродов, из-за чего с них испаряются частицы углерода. На их основе можно синтезировать различные наноструктуры: углеродные нанотрубки, наносферы (фуллерены) и тонкие листы графена, используемые в электронике и биомедицине. Однако до сих пор оставалось не ясным, какие условия синтеза — сила тока, размер электродов, межэлектродное расстояние, давление и сорт газа — оптимальны для сборки углеродных нанообъектов из отдельных частиц.

Ученые из Казанского национального исследовательского технического университета имени А. Н. Туполева-КАИ (Казань) разработали самосогласованную физико-математическую модель, наиболее полно описывающую процесс создания дугового разряда в двух инертных газах — аргоне и гелии. Авторы смоделировали ситуацию, когда в газ поместили два графитовых электрода (положительно и отрицательно заряженный), а затем подавали на них постоянный ток, постепенно увеличивая вкладываемую мощность в разряд. Численные расчеты позволили исследователям определить режим газового разряда, при котором становится возможным синтезировать в нем углеродные наноструктуры. Дело в том, что, согласно модели, газовый разряд по мере увеличения силы подаваемого на электроды тока проходит три последовательные стадии, лишь одна из которых подходит для синтеза.

Сначала в пространстве между электродами образуются только заряженные частицы буферного газа — ионы аргона или гелия, соответственно. Затем по мере нагревания электродов с них начинают испаряться нейтральные атомы и молекулы (димеры и тримеры) углерода. Они также ионизируются в плазме дугового разряда. По мере дальнейшего увеличения силы тока происходит смена плазмообразующего иона. Другими словами, доминирующим становится ион углерода вместо гелия или аргона. Испаренные в разрядный промежуток частицы углерода, а также их ионы, попадая в области с низкой температурой газа и на подложки, способны объединяться между собой и формировать сложные наноструктуры.

Таким образом, модель позволяет точно подобрать силу тока, давление газа, размер электродов и межэлектродное расстояние, чтобы максимально быстро добиться условий горения разряда, при которых синтез углеродных наноструктур будет наиболее эффективным.

«Предложенная модель привлекательна не только с фундаментальной, но и прикладной точки зрения. С одной стороны, она позволяет глубже понять природу такого классического объекта как дуговой разряд. С другой стороны, модель поможет повысить скорость и эффективность плазменного синтеза наноструктур, поскольку с ее помощью ученый сможет заблаговременно рассчитать и спрогнозировать оптимальные условия процесса. В дальнейшем мы планируем наработать как теоретическую, так и экспериментальную базу по оптимальным условиям синтеза различных типов наноструктур – углеродных, (включая наноалмазы), кремниевых, германиевых и металлических», — рассказывает руководитель проекта, поддержанного грантом РНФ, Алмаз Сайфутдинов, кандидат физико-математических наук, доцент кафедры общей физики Казанского национального исследовательского технического университета имени А. Н. Туполева-КАИ.

Source:  Пресс-служба РНФ

News article publications

Read also

Ученые исследовали свойства лезвийных гибридов из графена и углеродной нанотрубки
Получающиеся в итоге квази-1D-структуры не только сочетают в себе свойства обоих компонентов, но и обнаруживают синергетический эффект. Он заключается в значительном улучшении некоторых характеристик, что делает подобные гибриды перспективными при создании новейших опто- и наноэлектронных устройств.
Carbon materials
Materials Science
Mathematical modeling
Nanotechnology
7 May 2022
Ученые смогли точно настроить энергетическую структуру углеродных точек
Это означает также и точную настройку их оптических свойств, что полезно в самых разных областях — от биомедицины до оптоэлектроники
Carbon materials
Nanophotonics
Nanotechnology
Optoelectronics
12 May 2023
Тонкий слой кремнезема позволил золотым наночастицам «сиять» ярче
Наночастицы золота, покрытые тонким слоем кремнезема, лучше рассеивают свет, чем те, что имеют плотную «шубу», а значит, их можно использовать как систему адресной доставки лекарств с «маячком» для слежения
Materials Science
Mathematical modeling
Nanomedicine
Nanophotonics
Nanotechnology
Optics
17 January 2023
Ученые предложили способ расчета нанотвердости
Не нужны тщательная подготовка и калибровка оборудования - все делается на компьютере
Materials Science
Mathematical modeling
Nanotechnology
New techniques
4 February 2022
Физики смоделировали лазерный нагрев опухоли с внедренными наночастицами кремния
Такой подход поможет точечно уничтожать новообразования, не вредя здоровым тканям
Mathematical modeling
Nanotechnology
Oncology
28 January 2022
Микроволновые разряды помогут управлять сверхзвуковыми летательными аппаратами
Физики и механики разработали теоретическую модель, описывающую процесс формирования нитевидных микроволновых разрядов в газах. В этом случае газ нагревается до температур порядка 830°С и выше, и в нем формируется большое количество заряженных и возбужденных частиц. Это явление можно использовать в аэродинамике и космонавтике, чтобы воздействовать на потоки газа вблизи летательных аппаратов и тем самым управлять полетом, поскольку эти структуры влияют на скорость и траекторию движения аппарата.
Cosmonautics
Mathematical modeling
Plasma Physics
Space
22 March 2024