14 October 2023, 12:00

Новый геометрический метод позволит детальнее исследовать структуру кристаллов

Сегодня ученые всего мира ищут возможность создавать материалы с управляемыми свойствами. Такая задача требует понимания, как характеристики материала связаны с его составом и структурой. И если состав и свойства (например, эластичность, пластичность или хрупкость) вещества можно количественно измерить, то изучение закономерностей в структурах молекул и кристаллов — вопрос, к которому нужен особый подход, ведь расположение атомов относительно друг друга и их связи сложно описать численно.  Знание структуры важно для исследователей, так как характеристики материала зависят не только от того, какие в нем содержатся атомы и сколько их, но и от того, как они взаимодействуют между собой.

Новый геометрический метод позволит детальнее исследовать структуру кристаллов

Сейчас структуры молекул и кристаллов изучают в основном методами квантовой химии. У них много преимуществ: например, таким образом можно вычислить энергию взаимодействий. Но результат часто зависит от выбранного подхода, а вычисления, особенно для больших наборов данных, становятся время- и трудозатратными.

Ученые из Самарского национального исследовательского университета имени академика С. П. Королева (Самара) с коллегами из Нью-Йоркского университета в Абу-Даби (ОАЭ) предложили и протестировали новый метод для изучения пластичных и эластичных кристаллов, который позволяет количественно оценить взаимодействия между атомами в их структуре. Вычисления при этом в основном геометрические, их можно провести на компьютере в рамках анализа больших данных. Согласно предложенному методу, программа анализирует объемную модель кристаллической решетки и строит для каждого атома многогранник, характеризующий связи между этим атомом и ближайшими к нему. Такие многогранники называются полиэдрами Вороного-Дирихле.

Когда модель построена, программа рассчитывает площади всех граней полиэдров. Площадь грани, например, между водородом (H) и азотом (N) характеризует размер «окна», в котором они могут обмениваться электронами, и позволяет оценить связь этих двух атомов. Посчитав сумму площадей всех граней между парами H и N в модели кристалла, можно определить, какой процент от общей площади граней приходится на связь между этими атомами и, соответственно, какой вклад взаимодействия такого типа вносят в общую картину. Ученые анализируют этот показатель для каждого типа связи и получают исчерпывающую количественную информацию о структуре кристалла.

Полиэдры Вороного-Дирихле оказались высокочувствительными: с их помощью можно легко обнаружить ошибки в полученных ранее данных, а также выявить закономерности между структурой кристалла и его свойствами, например, пластичностью или эластичностью.

В ходе проведенной работы авторы применили полиэдры для анализа структур 27 эластичных и 36 пластичных кристаллов. Первые представляют собой кристаллы, которые возвращают исходную форму после деформации, а вторые — те, что поддаются изменению формы, как пластилин.

Авторам удалось охарактеризовать связи в таких структурах, однако оказалось, что рассмотренные кристаллы не имеют общих закономерностей в системах их межатомных взаимодействий. Это можно объяснить тем, что в выборку попали слишком разные по составу и строению материалы с пластическими и эластическими свойствами. Изученные кристаллы отличались друг от друга содержанием азота, галогенов или серы.

Кроме того, ученые обнаружили кристаллы с необычными структурами. Например, четыре пластических кристалла не содержали водорода, и, соответственно, не имели водородных связей, которые играют важную роль в остальных материалах. Также удалось найти ошибочные данные об одной из структур, полученной другими исследователями ранее.

«Данные, которые мы получаем при помощи полиэдров Вороного-Дирихле, другими методами получить невозможно. При этом сами материалы очень многообещающие: например, уже сегодня имеются сведения об использовании эластичных органических кристаллов, подобных волосам на теле человека и животного, в качестве сенсоров потока воздуха. В дальнейшем мы проведем нашими методами расчеты других выборок химических соединений, также обладающих ценными свойствами и вызывающих интерес у исследователей», — рассказывает руководитель проекта, поддержанного грантом РНФ, Антон Савченков, доцент кафедры неорганической химии Самарского университета.

Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в журнале Crystal Growth & Design.

Source:  Пресс-служба РНФ

News article publications

Read also

Математическая модель объяснила принцип «шесть рукопожатий»
Предложенный теоретико-игровой механизм помог описать этот социальный феномен за счет горизонтальных связей, а не вертикальных структур
Mathematical modeling
Mathematics
6 July 2023
Микроволновые разряды помогут управлять сверхзвуковыми летательными аппаратами
Физики и механики разработали теоретическую модель, описывающую процесс формирования нитевидных микроволновых разрядов в газах. В этом случае газ нагревается до температур порядка 830°С и выше, и в нем формируется большое количество заряженных и возбужденных частиц. Это явление можно использовать в аэродинамике и космонавтике, чтобы воздействовать на потоки газа вблизи летательных аппаратов и тем самым управлять полетом, поскольку эти структуры влияют на скорость и траекторию движения аппарата.
Cosmonautics
Mathematical modeling
Plasma Physics
Space
22 March 2024
Цифровые астроциты улучшили память нейросети на 20%
Ученые разработали первую в мире нейронную сеть, полностью построенную на принципах взаимодействия клеток реального головного мозга. Так, модель воспроизводит передачу сигналов не только между нервными клетками, но и между нейронами и астроцитами — вспомогательными клетками мозга. Эксперименты показали, что «подключение» астроцитов в работу нейросети улучшает ее способность «запоминать», то есть воспроизводить ранее полученную информацию, на 20%.
Cognitive Sciences
Mathematical modeling
Neural networks
30 January 2024
Определено, как повреждаются алмазы при нанесении лазерного QR-кода
Ученые определили механизм повреждения кристаллической решетки алмаза, лежащий в основе технологии нанесения уникальных меток на драгоценные камни с помощью лазера. Такие метки, подобно QR-коду, позволяют опознать каждый отдельный драгоценный камень и избежать подделок, но пока не используются массово. Знание механизма повреждения алмаза позволит доработать устройства для промышленного применения технологии.
Atomic physics
Crystallography
Laser physics
31 December 2023
Микробы в вечной мерзлоте могут помешать резкому потеплению климата
Ученые выяснили, что высокое разнообразие микроорганизмов, населяющих зону вечной мерзлоты, может значительно снизить скорость потепления атмосферы у поверхности Земли. По мере таяния многолетнемерзлых грунтов микробы начинают выделять метан и, если видов бактерий мало, в определенный момент произойдет массовый выброс этого парникового газа. Высокое же видовое богатство приведет к меньшему — в масштабе нескольких градусов — нагреву воздуха планеты.
Geology
Mathematical modeling
Microbiology
13 December 2023
Геологи экспериментально воспроизвели совместную кристаллизацию алмаза и граната
Геологи экспериментально подтвердили, что при температуре и давлении, аналогичных тем, что наблюдаются на глубинах около 200 километров, может происходить совместный рост алмаза и граната. Этот процесс происходит благодаря взаимодействию граната с углекислыми и водно-углекислыми флюидами — жидкостями, присутствующими в мантии Земли. Кроме того, авторы выяснили, что в среднем скорость роста алмазов в таких случаях составляет от 0,013 до 0,8 микрометров в час в зависимости от температуры. То есть, чтобы получить кристалл массой в один карат (0,2 грамма), потребуется от 4,5 месяцев до 17,5 лет.
Crystal chemistry
Crystallography
Geology
6 December 2023