pages 631-655

Transition Metal‐Catalyzed C–H Functionalization of Nucleoside Bases

Publication typeOther
Publication date2023-03-25
Abstract
Chapter 15 Transition Metal-Catalyzed C–H Functionalization of Nucleoside Bases Yong Liang, Yong Liang Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USSearch for more papers by this authorStanislaw F. Wnuk, Stanislaw F. Wnuk Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USSearch for more papers by this author Yong Liang, Yong Liang Department of Molecular Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USSearch for more papers by this authorStanislaw F. Wnuk, Stanislaw F. Wnuk Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USSearch for more papers by this author Book Editor(s):Tharmalingam Punniyamurthy, Tharmalingam PunniyamurthySearch for more papers by this authorAnil Kumar, Anil KumarSearch for more papers by this author First published: 25 March 2023 https://doi.org/10.1002/9781119774167.ch15 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The chapter describes the functionalization of pyrimidine and purine nucleosides by direct C–H bond activation in nucleobases. The chapter is organized by the position of the C–H bond in the heterocyclic rings. Strategies for direct C–H bond functionalization of nucleobases are divided into several categories based on: position of functionalization (C8 versus C6 versus C2 in purines or C6 versus C5 in pyrimidines); type of substrates coupled to nucleobases (e.g. aryl- or alkenyl halides, arenes, alkenes, or amines); and kind of transition metal catalyst used. References Agrofoglio , L. A. , Gillaizeau , I. , and Saito , Y. ( 2003 ). Palladium-assisted routes to nucleosides . Chemical Reviews 103 ( 5 ): 1875 – 1916 . Hocek , M. ( 2003 ). Syntheses of purines bearing carbon substituents in positions 2, 6 or 8 by metal- or organometal-mediated C−C bond-forming reactions . European Journal of Organic Chemistry ( 2 ): 245 – 254 . Legraverend , M. ( 2008 ). Recent advances in the synthesis of purine derivatives and their precursors . Tetrahedron 64 ( 37 ): 8585 – 8603 . Shaughnessy , K. ( 2015 ). Palladium-catalyzed functionalization of unprotected nucleosides in aqueous media . Molecules 20 ( 5 ): 9419 – 9454 . Boutorine , A. , Novopashina , D. , Krasheninina , O. , Nozeret , K. , and Venyaminova , A. ( 2013 ). Fluorescent probes for nucleic acid visualization in fixed and live cells . Molecules 18 ( 12 ): 15357 – 15397 . Huang , R.-M. , Chen , Y.-N. , Zeng , Z. , Gao , C.-H. , Su , X. , and Peng , Y. ( 2014 ). Marine nucleosides: Structure, bioactivity, synthesis and biosynthesis . Marine Drugs 12 ( 12 ): 5817 – 5838 . Jordheim , L. P. , Durantel , D. , Zoulim , F. , and Dumontet , C. ( 2013 ). Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases . Nature Reviews Drug Discovery 12 ( 6 ): 447 – 464 . Legraverend , M. and Grierson , D. S. ( 2006 ). The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets . Bioorganic & Medicinal Chemistry 14 ( 12 ): 3987 – 4006 . Rosemeyer , H. ( 2004 ). The chemodiversity of purine as a constituent of natural products . Chemistry & Biodiversity 1 ( 3 ): 361 – 401 . Abdoli , M. , Mirjafary , Z. , Saeidian , H. , and Kakanejadifard , A. ( 2015 ). New developments in direct functionalization of C-H and N-H bonds of purine bases via metal catalyzed cross-coupling reactions . RSC Advances 5 ( 55 ): 44371 – 44389 . Bode , J. W. , Cabrera , M. , Howlader , A. H. , Huang , Z. , Liang , Y. , Liu , G. , Maison , W. , Ohe , K. , Okamoto , K. , Osuna Gálvez , A. , Wen , Z. , Wnuk , S. F. , Wu , F. , and Zhu , S. ( 2020 ). 16.17.7 Purines (Update 2020) . In: Science of Synthesis, Knowledge Updates 2020/1 (eds. M. Christmann , Z. Huang , X. Jiang , J. J. Li , M. Oestreich , E. J. Petersson , E. Schaumann , and M. Wang ), 2020. Stuttgart : Georg Thieme Verlag . Gayakhe , V. , Sanghvi , Y. S. , Fairlamb , I. J. S. , and Kapdi , A. R. ( 2015 ). Catalytic C-H bond functionalisation of purine and pyrimidine nucleosides: A synthetic and mechanistic perspective . Chemical Communications 51 ( 60 ): 11944 – 11960 . Liang , Y. and Wnuk , S. ( 2015 ). Modification of purine and pyrimidine nucleosides by direct C-H bond activation . Molecules 20 ( 3 ): 4874 – 4901 . Liang , Y. and Wnuk , S. F. ( 2018 ). Chapter 7 - C-H bond functionalization strategies for modification of nucleosides . In: Palladium-Catalyzed Modification of Nucleosides, Nucleotides and Oligonucleotides (eds. A. R. Kapdi , D. Maiti , and Y. S. Sanghvi ). Elsevier . Muthian , S. , Annamalai , S. , and Anilkumar , R. K. ( 2019 ). C-5 substituted pyrimidine nucleotides/nucleosides: Recent progress in synthesis, functionalization, and applications . Current Organic Chemistry 23 ( 13 ): 1439 – 1468 . Sari , O. , Roy , V. , and Agrofoglio , L. A. ( 2013 ). Nucleosides modified at the base moiety. In: Chemical Synthesis of Nucleoside Analogues (ed. P. Merino). Wiley. Frihed , T. G. , Bols , M. , and Pedersen , C. M. ( 2016 ). C–H functionalization on carbohydrates . European Journal of Organic Chemistry ( 16 ): 2740 – 2756 . Ali , W. , Prakash , G. , and Maiti , D. ( 2021 ). Recent development in transition metal-catalysed C–H olefination . Chemical Science 12 ( 8 ): 2735 – 2759 . Gandeepan , P. , Müller , T. , Zell , D. , Cera , G. , Warratz , S. , and Ackermann , L. ( 2019 ). 3d Transition metals for C–H activation . Chemical Reviews 119 ( 4 ): 2192 – 2452 . Jacob , C. , Maes , B. U. W. , and Evano , G. ( 2021 ). Transient directing groups in metal−organic cooperative catalysis . Chemistry – A European Journal 27 ( 56 ): 13899 – 13952 . Liu , S.-L. , Shi , Y. , Xue , C. , Zhang , L. , Zhou , L. , and Song , M.-P. ( 2021 ). Maleimides in directing-group-controlled transition-metal-catalyzed selective C−H alkylation . European Journal of Organic Chemistry ( 43 ): 5862 – 5879 . Murali , K. , Machado , L. A. , Carvalho , R. L. , Pedrosa , L. F. , Mukherjee , R. , Da Silva Júnior , E. N. , and Maiti , D. ( 2021 ). Decoding directing groups and their pivotal role in C−H activation . Chemistry – A European Journal 27 ( 49 ): 12453 – 12508 . Ackermann , L. , Vicente , R. , and Kapdi , A. R. ( 2009 ). Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage . Angewandte Chemie International Edition 48 ( 52 ): 9792 – 9826 . Davies , H. M. L. and Morton , D. ( 2016 ). Recent advances in C–H functionalization . The Journal of Organic Chemistry 81 ( 2 ): 343 – 350 . Fagnou , K. ( 2010 ). Mechanistic considerations in the development and use of azine, diazine and azole N -oxides in palladium-catalyzed direct arylation . Topics in Current Chemistry 292 ( 35–56 ). Labinger , J. A. and Bercaw , J. E. ( 2002 ). Understanding and exploiting C-H bond activation . Nature 417 ( 6888 ): 507 – 514 . Lafrance , M. and Fagnou , K. ( 2006 ). Palladium-catalyzed benzene arylation: Incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst design . Journal of the American Chemical Society 128 ( 51 ): 16496 – 16497 . Su , Y.-X. and Sun , L.-P. ( 2012 ). Recent progress towards transition-metal-catalyzed direct arylation of heteroarenes . Mini-Reviews in Organic Chemistry 9 ( 1 ): 87 – 117 . De Ornellas , S. , Storr , T. E. , Williams , T. J. , Baumann , C. G. , and Fairlamb , I. J. S. ( 2011 ). Direct C-H/C-X coupling methodologies mediated by Pd/Cu or Cu: An examination of the synthetic applications and mechanistic findings . Current Organic Synthesis 8 ( 1 ): 79 – 101 . De Ornellas , S. , Williams , T. J. , Baumann , C. G. , and Fairlamb , I. J. S. ( 2013 ). Chapter 12 catalytic C-H/C-X bond functionalisation of nucleosides, nucleotides, nucleic acids, amino acids, peptides and proteins. In: C-H and C-X Bond Functionalization: Transition Metal Mediation (ed. X. Ribas). The Royal Society of Chemistry . Ruan , Z. , Lackner , S. , and Ackermann , L. ( 2016 ). Nickel-catalyzed C–H alkynylation of anilines: Expedient access to functionalized indoles and purine nucleobases . ACS Catalysis 6 ( 7 ): 4690 – 4693 . Kim , J. Y. , Park , S. H. , Ryu , J. , Cho , S. H. , Kim , S. H. , and Chang , S. ( 2012 ). Rhodium-catalyzed intermolecular amidation of arenes with sulfonyl azides via chelation-assisted C–H bond activation . Journal of the American Chemical Society 134 ( 22 ): 9110 – 9113 . Xu , C. , Zhang , L. , Xu , J. , Pan , Y. , Li , F. , Li , H. , and Xu , L. ( 2016 ). Rhodium(I)-catalyzed decarbonylative direct olefination of 6-arylpurines with vinyl carboxylic acids directed by the purinyl N1 atom . ChemistrySelect 1 ( 4 ): 653 – 658 . Lakshman , M. K. , Deb , A. C. , Chamala , R. R. , Pradhan , P. , and Pratap , R. ( 2011 ). Direct arylation of 6-phenylpurine and 6-arylpurine nucleosides by ruthenium-catalyzed C–H bond activation . Angewandte Chemie International Edition 50 ( 48 ): 11400 – 11404 . Singh , M. K. , Akula , H. K. , Satishkumar , S. , Stahl , L. , and Lakshman , M. K. ( 2016 ). Ruthenium-catalyzed C–H bond activation approach to azolyl aminals and hemiaminal ethers, mechanistic evaluations, and isomer interconversion . ACS Catalysis 6 ( 3 ): 1921 – 1928 . Warratz , S. , Burns , D. J. , Zhu , C. , Korvorapun , K. , Rogge , T. , Scholz , J. , Jooss , C. , Gelman , D. , and Ackermann , L. ( 2017 ). Meta-C−H bromination on purine bases by heterogeneous ruthenium catalysis . Angewandte Chemie International Edition 56 ( 6 ): 1557 – 1560 . Niu , H. , Su , L. , Zhang , Q. , Zhang , W. , Fu , H. , Li , J. , Qu , G. , and Guo , H. ( 2015 ). Pt catalyzed C-H activation of purines and aryl boric acids to 8-arylpurine analogues . Chinese Journal of Organic Chemistry 35 ( 5 ): 1156 – 1160 . Pawar , A. B. and Chang , S. ( 2015 ). Cobalt-catalyzed C–H cyanation of (hetero)arenes and 6-arylpurines with N-cyanosuccinimide as a new cyanating agent . Organic Letters 17 ( 3 ): 660 – 663 . Sabat , N. , Poštová Slavětínská , L. , and Hocek , M. ( 2015 ). Ir-catalyzed C–H silylations of phenyldeazapurines . Tetrahedron Letters 56 ( 49 ): 6860 – 6862 . Graml , A. , Ghosh , I. , and König , B. ( 2017 ). Synthesis of arylated nucleobases by visible light photoredox catalysis . The Journal of Organic Chemistry 82 ( 7 ): 3552 – 3560 . Yang , Q. , Wei , T. , He , Y. , Liang , Y. , and Zhang , Z.-T. ( 2015 ). Direct arylation of 5-iodouracil and 5-iodouridine with heteroarenes and benzene via photochemical reaction . Helvetica Chimica Acta 98 ( 7 ): 953 – 960 . Karikó , K. , Muramatsu , H. , Welsh , F. A. , Ludwig , J. , Kato , H. , Akira , S. , and Weissman , D. ( 2008 ). Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability . Molecular Therapy 16 ( 11 ): 1833 – 1840 . Ashwell , M. , Jones , A. S. , Kumar , A. , Sayers , J. R. , Walker , R. T. , Sakuma , T. , and De Clercq , E. ( 1987 ). The synthesis and antiviral properties of ( E )-5-(2-bromovinyl)-2'-deoxyuridine-related compounds . Tetrahedron 43 ( 20 ): 4601 – 4608 . Jones , A. S. , Verhelst , G. , and Walker , R. T. ( 1979 ). The synthesis of the potent anti-herpes virus agent, E -5-(2-bromovinyl)-2′-deoxyuridine and related compounds . Tetrahedron Letters 20 ( 45 ): 4415 – 4418 . Itahara , T. ( 1986 ). Oxidative coupling of uracil derivatives with maleimides by palladium acetate . Chemistry Letters 15 ( 2 ): 239 – 242 . Hirota , K. , Isobe , Y. , Kitade , Y. , and Maki , Y. ( 1987 ). A simple synthesis of 5-(1-alkenyl)uracil derivatives by palladium-catalyzed oxidative coupling of uracils with olefins . Synthesis 1987 ( 05 ): 495 – 496 . Yu , -Y.-Y. and Georg , G. I. ( 2013 ). Dehydrogenative alkenylation of uracils via palladium-catalyzed regioselective C-H activation . Chemical Communications 49 ( 35 ): 3694 – 3696 . Le Bras , J. and Muzart , J. ( 2011 ). Intermolecular dehydrogenative Heck reactions . Chemical Reviews 111 ( 3 ): 1170 – 1214 . Kim , K. H. , Lee , H. S. , and Kim , J. N. ( 2011 ). Palladium-catalyzed direct 5-arylation of 1,3-dimethyluracil with aryl bromides: An electrophilic metalation–deprotonation with electrophilic arylpalladium intermediate . Tetrahedron Letters 52 ( 47 ): 6228 – 6233 . Kim , K. H. , Lee , H. S. , Kim , S. H. , and Kim , J. N. ( 2012 ). Palladium(II)-catalyzed oxidative homo-coupling of 1,3-dimethyluracil derivatives . Tetrahedron Letters 53 ( 11 ): 1323 – 1327 . Wang , D.-C. , Xia , R. , Xie , M.-S. , Qu , G.-R. , and Guo , H.-M. ( 2016 ). Synthesis of cycloalkyl substituted purine nucleosides via a metal-free radical route . Organic & Biomolecular Chemistry 14 ( 18 ): 4189 – 4193 . Ghosh , P. , Kwon , N. Y. , Kim , S. , Han , S. , Lee , S. H. , An , W. , Mishra , N. K. , Han , S. B. , and Kim , I. S. ( 2021 ). C−H methylation of iminoamido heterocycles with sulfur ylides . Angewandte Chemie International Edition 60 ( 1 ): 191 – 196 . Lee , H. S. , Kim , S. H. , and Kim , J. N. ( 2010 ). Pd(II)-Catalyzed acetoxylation of uracil via electrophilic palladation . Bulletin of the Korean Chemical Society 31 ( 1 ): 238 – 241 . Wang , Q. , Ma , X.-L. , Chen , -Y.-Y. , Jiang , C.-N. , and Xu , Y.-L. ( 2020 ). Electrochemical synthesis of 5-selenouracil derivatives by selenylation of uracils . European Journal of Organic Chemistry ( 28 ): 4384 – 4388 . Nguyen , N. H. , Len , C. , Castanet , A.-S. , and Mortier , J. ( 2011 ). Selectivity in C-alkylation of dianions of protected 6-methyluridine . Beilstein Journal of Organic Chemistry 7 1228 – 1233 . Tanaka , H. , Nasu , I. , and Miyasaka , T. ( 1979 ). Regiospecific C-alkylation of uridine: A simple route to 6-alkyluridines . Tetrahedron Letters 20 ( 49 ): 4755 – 4758 . Tanaka , H. , Matsuda , A. , Iijima , S. , Hayakawa , H. , and Miyasaka , T. ( 1983 ). Synthesis and biological activities of 5-substituted 6-phenylthio and 6-iodouridines, a new class of antileukemic nucleosides . Chemical & Pharmaceutical Bulletin 31 ( 6 ): 2164 – 2167 . Čerňová , M. , Čerňa , I. , Pohl , R. , and Hocek , M. ( 2011 ). Regioselective direct C–H arylations of protected uracils. Synthesis of 5- and 6-aryluracil bases . Journal of Organic Chemistry 76 ( 13 ): 5309 – 5319 . Čerňová , M. , Pohl , R. , and Hocek , M. ( 2009 ). Switching the regioselectivity of direct C–H arylation of 1,3-dimethyluracil . European Journal of Organic Chemistry ( 22 ): 3698 – 3701 . Savitha , B. , Reddy , E. K. , Kumar , C. S. A. , Karuvalam , R. P. , Padusha , M. S. A. , Bakulev , V. A. , Narasimhamurthy , K. H. , Sajith , A. M. , and Joy , M. N. ( 2019 ). A modified approach for the site-selective direct C-6 arylation of benzylated uracil . Tetrahedron Letters 60 ( 52 ): 151332 . Ćerňová , M. , Pohl , R. , Klepetářová , B. , and Hocek , M. ( 2014 ). C-H trifluoromethylations of 1,3-dimethyluracil and reactivity of the products in C-H arylations . Heterocycles 89 ( 5 ): 1159 – 1171 . Do , H.-Q. and Daugulis , O. ( 2011 ). A general method for copper-catalyzed arene cross-dimerization . Journal of the American Chemical Society 133 ( 34 ): 13577 – 13586 . Mondal , B. , Hazra , S. , and Roy , B. ( 2014 ). Pd(II)-catalyzed regioselective direct arylation of uracil via oxidative Heck reaction using arylboronic acids . Tetrahedron Letters 55 ( 5 ): 1077 – 1081 . Lee , H. S. , Kim , K. H. , Kim , S. H. , and Kim , J. N. ( 2012 ). Palladium-catalyzed synthesis of benzo[ c ]pyrimido[1,6- a ]azepine scaffold from Morita–Baylis–Hillman adducts: Intramolecular 6-arylation of uracil nucleus . Tetrahedron Letters 53 ( 5 ): 497 – 501 . Roy , B. , Hazra , S. , Mondal , B. , and Majumdar , K. C. ( 2013 ). Cu(OTf) 2 -catalyzed dehydrogenative C–H activation under atmospheric oxygen: An expedient approach to pyrrolo[3,2- d ]pyrimidine derivatives . European Journal of Organic Chemistry ( 21 ): 4570 – 4577 . Liang , Y. , Gloudeman , J. , and Wnuk , S. F. ( 2014 ). Palladium-catalyzed direct arylation of 5-halouracils and 5-halouracil nucleosides with arenes and heteroarenes promoted by TBAF . Journal of Organic Chemistry 79 ( 9 ): 4094 – 4103 . Désaubry , L. and Bourguignon , -J.-J. ( 1995 ). Regio-controlled radical substitution of 9-substituted purines . Tetrahedron Letters 36 ( 43 ): 7875 – 7876 . Noé , M. S. , Ríos , A. C. , and Tor , Y. ( 2012 ). Design, synthesis, and spectroscopic properties of extended and fused pyrrolo-dC and pyrrolo-C analogs . Organic Letters 14 ( 12 ): 3150 – 3153 . Srivatsan , S. G. and Tor , Y. ( 2007 ). Using an emissive uridine analogue for assembling fluorescent HIV-1 TAR constructs . Tetrahedron 63 ( 17 ): 3601 – 3607 . Wicke , L. and Engels , J. W. ( 2012 ). Postsynthetic on column RNA labeling via Stille coupling . Bioconjugate Chemistry 23 ( 3 ): 627 – 642 . Mondal , M. , Begum , T. , and Bharali , P. ( 2018 ). Regioselective C–H and N–H functionalization of purine derivatives and analogues: A synthetic and mechanistic perspective . Catalysis Science & Technology 8 ( 23 ): 6029 – 6056 . Sherwood , T. C. , Li , N. , Yazdani , A. N. , and Dhar , T. G. M. ( 2018 ). Organocatalyzed, visible-light photoredox-mediated, one-pot Minisci reaction using carboxylic acids via N-(acyloxy)phthalimides . The Journal of Organic Chemistry 83 ( 5 ): 3000 – 3012 . Bakkestuen , A. K. , Gundersen , -L.-L. , and Utenova , B. T. ( 2005 ). Synthesis, biological activity, and SAR of antimycobacterial 9-aryl-, 9-arylsulfonyl-, and 9-benzyl-6-(2-furyl)purines . Journal of Medicinal Chemistry 48 ( 7 ): 2710 – 2723 . Gundersen , -L.-L. , Nissen-Meyer , J. , and Spilsberg , B. ( 2002 ). Synthesis and antimycobacterial activity of 6-arylpurines: The requirements for the N-9 substituent in active antimycobacterial purines . Journal of Medicinal Chemistry 45 ( 6 ): 1383 – 1386 . Hocek , M. , Holý , A. , Votruba , I. , and Dvořáková , H. ( 2000 ). Synthesis and cytostatic activity of substituted 6-phenylpurine bases and nucleosides: Application of the Suzuki−Miyaura cross-coupling reactions of 6-chloropurine derivatives with phenylboronic acids . Journal of Medicinal Chemistry 43 ( 9 ): 1817 – 1825 . Xia , R. , Niu , H.-Y. , Qu , G.-R. , and Guo , H.-M. ( 2012 ). CuI controlled C–C and C–N bond formation of heteroaromatics through C(sp3)–H activation . Organic Letters 14 ( 21 ): 5546 – 5549 . Li , G.-X. , Morales-Rivera , C. A. , Wang , Y. , Gao , F. , He , G. , Liu , P. , and Chen , G. ( 2016 ). Photoredox-mediated Minisci C-H alkylation of N-heteroarenes using boronic acids and hypervalent iodine . Chemical Science 7 ( 10 ): 6407 – 6412 . Yan , H. , Hou , Z.-W. , and Xu , H.-C. ( 2019 ). Photoelectrochemical C−H alkylation of heteroarenes with organotrifluoroborates . Angewandte Chemie International Edition 58 ( 14 ): 4592 – 4595 . Xia , R. , Xie , M.-S. , Niu , H.-Y. , Qu , G.-R. , and Guo , H.-M. ( 2014 ). Radical route for the alkylation of purine nucleosides at C6 via Minisci reaction . Organic Letters 16 ( 2 ): 444 – 447 . Pitre , S. P. , Muuronen , M. , Fishman , D. A. , and Overman , L. E. ( 2019 ). Tertiary alcohols as radical precursors for the introduction of tertiary substituents into heteroarenes . ACS Catalysis 9 ( 4 ): 3413 – 3418 . Tian , M. , Yu , M. , Shi , T. , Hu , J. , Li , S. , Xu , J. , Chen , N. , and Du , H. ( 2017 ). Silver-catalyzed direct C6–H arylation of purines and purine nucleosides with arylboronic acids . European Journal of Organic Chemistry ( 24 ): 3415 – 3420 . D'Errico , S. , Piccialli , V. , Oliviero , G. , Borbone , N. , Amato , J. , D'Atri , V. , and Piccialli , G. ( 2011 ). Probing the reactivity of nebularine N1-oxide. A novel approach to C-6 C-substituted purine nucleosides . Tetrahedron 67 ( 34 ): 6138 – 6144 . Gundersen , -L.-L. , Langli , G. , and Rise , F. ( 1995 ). Regioselective Pd-mediated coupling between 2,6-dichloropurines and organometallic reagents . Tetrahedron Letters 36 ( 11 ): 1945 – 1948 . Cerna , I. , Pohl , R. , and Hocek , M. ( 2007 ). The first direct C-H arylation of purine nucleosides . Chemical Communications 45 : 4729 – 4730 . Čerňa , I. , Pohl , R. , Klepetářová , B. , and Hocek , M. ( 2006 ). Direct C−H arylation of purines: Development of methodology and its use in regioselective synthesis of 2,6,8-trisubstituted purines . Organic Letters 8 ( 23 ): 5389 – 5392 . Cerna , I. and Hocek , M. ( 2008 ). Direct C-H arylation of purines and purine nucleosides. Collection Symposium Series 10 : 327 – 329 . Storr , T. E. , Firth , A. G. , Wilson , K. , Darley , K. , Baumann , C. G. , and Fairlamb , I. J. S. ( 2008 ). Site-selective direct arylation of unprotected adenine nucleosides mediated by palladium and copper: Insights into the reaction mechanism . Tetrahedron 64 ( 26 ): 6125 – 6137 . Reay , A. J. and Fairlamb , I. J. S. ( 2015 ). Catalytic C-H bond functionalisation chemistry: The case for quasi-heterogeneous catalysis . Chemical Communications 51 ( 91 ): 16289 – 16307 . Baumann , C. G. , De Ornellas , S. , Reeds , J. P. , Storr , T. E. , Williams , T. J. , and Fairlamb , I. J. S. ( 2014 ). Formation and propagation of well-defined Pd nanoparticles (PdNPs) during C–H bond functionalization of heteroarenes: Are nanoparticles a moribund form of Pd or an active catalytic species? Tetrahedron 70 ( 36 ): 6174 – 6187 . Storr , T. E. , Baumann , C. G. , Thatcher , R. J. , De Ornellas , S. , Whitwood , A. C. , and Fairlamb , I. J. S. ( 2009 ). Pd(0)/Cu(I)-mediated direct arylation of 2′-deoxyadenosines: Mechanistic role of Cu(I) and reactivity comparisons with related purine nucleosides . Journal of Organic Chemistry 74 ( 16 ): 5810 – 5821 . Storr , T. E. , Strohmeier , J. A. , Baumann , C. G. , and Fairlamb , I. J. S. ( 2010 ). A sequential direct arylation/Suzuki-Miyaura cross-coupling transformation of unprotected 2'-deoxyadenosine affords a novel class of fluorescent analogues . Chemical Communications 46 ( 35 ): 6470 – 6472 . Bellina , F. , Cauteruccio , S. , and Rossi , R. ( 2006 ). Palladium- and copper-mediated direct C-2 arylation of azoles — including free ( NH )-imidazole, -benzimidazole and -indole under base-free and ligandless conditions . European Journal of Organic Chemistry ( 6 ): 1379 – 1382 . Western , E. C. and Shaughnessy , K. H. ( 2005 ). Inhibitory effects of the guanine moiety on Suzuki couplings of unprotected halonucleosides in aqueous media . The Journal of Organic Chemistry 70 ( 16 ): 6378 – 6388 . Gigante , A. , Priego , E.-M. , Sánchez-Carrasco , P. , Ruiz-Pérez , L. M. , Vande Voorde , J. , Camarasa , M.-J. , Balzarini , J. , González-Pacanowska , D. , and Pérez-Pérez , M.-J. ( 2014 ). Microwave-assisted synthesis of C-8 aryl and heteroaryl inosines and determination of their inhibitory activities against Plasmodium falciparum purine nucleoside phosphorylase . European Journal of Medicinal Chemistry 459 – 465 . Yu , M. , Wang , Z. , Hu , J. , Li , S. , and Du , H. ( 2015 ). Copper-catalyzed intramolecular alkoxylation of purine nucleosides: One-step synthesis of 5′-O,8-cyclopurine nucleosides . The Journal of Organic Chemistry 80 ( 19 ): 9446 – 9453 . Kavoosi , S. , Rayala , R. , Walsh , B. , Barrios , M. , Gonzalez , W. G. , Miksovska , J. , Mathivathanan , L. , Raptis , R. G. , and Wnuk , S. F. ( 2016 ). Synthesis of 8-(1,2,3-triazol-1-yl)-7-deazapurine nucleosides by azide–alkyne click reactions and direct CH bond functionalization . Tetrahedron Letters 57 ( 39 ): 4364 – 4367 . Sidwell , R. W. , Huffman , J. H. , Khare , L. G. P. , Allen , B. , Witkowski , R. J. T. , and Robins , K. ( 1972 ). Broad-spectrum antiviral activity of virazole: 1-β-D-Ribofuranosyl-1,2,4-triazole-3-carboxamide . Science 177 ( 4050 ): 705 – 706 . Tang , J. , Cong , M. , Xia , Y. , Quelever , G. , Fan , Y. , Qu , F. , and Peng , L. ( 2015 ). Pd-catalyzed oxidative C-H alkenylation for synthesizing arylvinyltriazole nucleosides . Organic & Biomolecular Chemistry 13 ( 1 ): 110 – 114 . Wu , G. , Zhou , J. , Zhang , M. , Hu , P. , and Su , W. ( 2012 ). Palladium-catalyzed direct arylation of benzoxazoles with unactivated simple arenes . Chemical Communications 48 ( 71 ): 8964 – 8966 . Wu , R. , Du , T. , Sun , W. , Shaginian , A. , Gao , S. , Li , J. , Wan , J. , and Liu , G. ( 2021 ). Functionalization of DNA-tagged alkenes enabled by visible-light-induced C–H activation of N-aryl tertiary amines . Organic Letters 23 ( 9 ): 3486 – 3490 . Fan , Z. , Zhao , S. , Liu , T. , Shen , P.-X. , Cui , Z.-N. , Zhuang , Z. , Shao , Q. , Chen , J. S. , Ratnayake , A. S. , Flanagan , M. E. , Kölmel , D. K. , Piotrowski , D. W. , Richardson , P. , and Yu , J.-Q. ( 2020 ). Merging C(sp3)–H activation with DNA-encoding . Chemical Science 11 ( 45 ): 12282 – 12288 . Gao , H. , Lin , S. , Zhang , S. , Chen , W. , Liu , X. , Yang , G. , Lerner , R. A. , Xu , H. , Zhou , Z. , and Yi , W. ( 2021 ). gem-Difluoromethylene alkyne-enabled diverse C−H functionalization and application to the on-DNA synthesis of difluorinated isocoumarins . Angewandte Chemie International Edition 60 ( 4 ): 1959 – 1966 . Allu , S. , Ravi , M. , and Kumara Swamy , K. C. ( 2016 ). Rhodium(III)-catalysed carbenoid C(sp2)–H functionalisation of aniline substrates with α-diazo esters: Formation of oxindoles and characterisation/utility of an intermediate-like rhodacycle . European Journal of Organic Chemistry ( 34 ): 5697 – 5705 . Greco , N. J. and Tor , Y. ( 2005 ). Simple fluorescent pyrimidine analogues detect the presence of DNA abasic sites . Journal of the American Chemical Society 127 ( 31 ): 10784 – 10785 . Čerňa , I. , Pohl , R. , Klepetářová , B. , and Hocek , M. ( 2008 ). Synthesis of 6,8,9-tri- and 2,6,8,9-tetrasubstituted purines by a combination of the Suzuki cross-coupling, N -arylation, and direct C−H arylation reactions . Journal of Organic Chemistry 73 ( 22 ): 9048 – 9054 . Maes , J. , Rauws , T. R. M. , and Maes , B. U. W. ( 2013 ). Synthesis of C8-N9 annulated purines by iron-catalyzed C-H amination . Chemistry-A European Journal 19 ( 28 ): 9137 – 9141 . Leone , D.-L. , Hubalek , M. , Pohl , R. , Sykorova , V. , and Hocek , M. ( 2021 ). 1,3-Diketone-modified nucleotides and DNA for cross-linking with arginine-containing peptides and proteins . Angewandte Chemie International Edition 60 ( 32 ): 17383 – 17387 . Allu , S. and Kumara Swamy , K. C. ( 2015 ). Ruthenium-catalyzed oxidative annulation of 6-anilinopurines with alkynes via CH activation: Synthesis of indole-substituted purines/purine nucleosides . Advanced Synthesis & Catalysis 357 ( 12 ): 2665 – 2680 . Transition‐Metal‐Catalyzed C‐H Functionalization of Heterocycles ReferencesRelatedInformation
Found 
Found 

Top-30

Journals

1
Nucleosides, Nucleotides and Nucleic Acids
1 publication, 33.33%
Journal of the American Chemical Society
1 publication, 33.33%
ChemCatChem
1 publication, 33.33%
1

Publishers

1
Taylor & Francis
1 publication, 33.33%
American Chemical Society (ACS)
1 publication, 33.33%
Wiley
1 publication, 33.33%
1
  • We do not take into account publications without a DOI.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
3
Share
Profiles