Open Access
Open access
Advanced Science, volume 11, issue 35

Prediction of Room‐Temperature Superconductivity in Quasi‐Atomic H2‐Type Hydrides at High Pressure

Publication typeJournal Article
Publication date2024-07-21
Journal: Advanced Science
scimago Q1
SJR3.914
CiteScore18.9
Impact factor14.3
ISSN21983844
Abstract

Achieving superconductivity at room temperature (RT) is a holy grail in physics. Recent discoveries on high‐Tc superconductivity in binary hydrides H3S and LaH10 at high pressure have directed the search for RT superconductors to compress hydrides with conventional electron–phonon mechanisms. Here, an exceptional family of superhydrides is predicated under high pressures, MH12 (M = Mg, Sc, Zr, Hf, Lu), all exhibiting RT superconductivity with calculated Tcs ranging from 313 to 398 K. In contrast to H3S and LaH10, the hydrogen sublattice in MH12 is arranged as quasi‐atomic H2 units. This unique configuration is closely associated with high Tc, attributed to the high electronic density of states derived from H2 antibonding states at the Fermi level and the strong electron–phonon coupling related to the bending vibration of H2 and H‐M‐H. Notably, MgH12 and ScH12 remain dynamically stable even at pressure below 100 GPa. The findings offer crucial insights into achieving RT superconductivity and pave the way for innovative directions in experimental research.

Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
1
2
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?
Profiles