Chemistry - A European Journal, volume 16, issue 29, pages 8726-8737

Studies on electronic effects in O-, N- and S-chelated ruthenium olefin-metathesis catalysts.

Eyal Tzur 1
Anna Szadkowska 2
Amos Ben-Asuly 3, 4
Anna Makal 5
Israel Goldberg 6
Krzysztof Woźniak 5
Karol Grela 7
Publication typeJournal Article
Publication date2010-06-16
scimago Q1
SJR1.058
CiteScore7.9
Impact factor3.9
ISSN09476539, 15213765
General Chemistry
Catalysis
Organic Chemistry
Abstract
A short overview on the structural design of the Hoveyda-Grubbs-type ruthenium initiators chelated through oxygen, nitrogen or sulfur atoms is presented. Our aim was to compare and contrast O-, N- and S-chelated ruthenium complexes to better understand the impact of electron-withdrawing and -donating substituents on the geometry and activity of the ruthenium complexes and to gain further insight into the trans-cis isomerisation process of the S-chelated complexes. To evaluate the different effects of chelating heteroatoms and to probe electronic effects on sulfur- and nitrogen-chelated latent catalysts, we synthesised a series of novel complexes. These catalysts were compared against two well-known oxygen-chelated initiators and a sulfoxide-chelated complex. The structures of the new complexes have been determined by single-crystal X-ray diffraction and analysed to search for correlations between the structural features and activity. The replacement of the oxygen-chelating atom by a sulfur or nitrogen atom resulted in catalysts that were inert at room temperature for typical ring-closing metathesis (RCM) and cross-metathesis reactions and showed catalytic activity only at higher temperatures. Furthermore, one nitrogen-chelated initiator demonstrated thermo-switchable behaviour in RCM reactions, similar to its sulfur-chelated counterparts.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
16
2
4
6
8
10
12
14
16

Publishers

5
10
15
20
25
30
5
10
15
20
25
30
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?