Open Access
Open access
Ecology and Evolution, volume 9, issue 7, pages 4245-4263

Genome streamlining via complete loss of introns has occurred multiple times in lichenized fungal mitochondria

Cloe S Pogoda 1
Kyle G Keepers 1
Arif Y Nadiadi 1
Dustin W Bailey 1
JAMES C. LENDEMER 2
ERIN A. MANZITTO-TRIPP 1, 3
Nolan C Kane 1
Publication typeJournal Article
Publication date2019-03-21
scimago Q1
SJR0.864
CiteScore4.4
Impact factor2.3
ISSN20457758
PubMed ID:  31016002
Ecology, Evolution, Behavior and Systematics
Ecology
Nature and Landscape Conservation
Abstract
Reductions in genome size and complexity are a hallmark of obligate symbioses. The mitochondrial genome displays clear examples of these reductions, with the ancestral alpha-proteobacterial genome size and gene number having been reduced by orders of magnitude in most descendent modern mitochondrial genomes. Here, we examine patterns of mitochondrial evolution specifically looking at intron size, number, and position across 58 species from 21 genera of lichenized Ascomycete fungi, representing a broad range of fungal diversity and niches. Our results show that the cox1gene always contained the highest number of introns out of all the mitochondrial protein-coding genes, that high intron sequence similarity (>90%) can be maintained between different genera, and that lichens have undergone at least two instances of complete, genome-wide intron loss consistent with evidence for genome streamlining via loss of parasitic, noncoding DNA, in Phlyctis boliviensisand Graphis lineola. Notably, however, lichenized fungi have not only undergone intron loss but in some instances have expanded considerably in size due to intron proliferation (e.g., Alectoria fallacina and Parmotrema neotropicum), even between closely related sister species (e.g., Cladonia). These results shed light on the highly dynamic mitochondrial evolution that is occurring in lichens and suggest that these obligate symbiotic organisms are in some cases undergoing recent, broad-scale genome streamlining via loss of protein-coding genes as well as noncoding, parasitic DNA elements.
Sandor S., Zhang Y., Xu J.
2018-09-12 citations by CoLab: 102 Abstract  
Mitochondria are the powerhouses of eukaryotic cells, responsible for ATP generation and playing a role in a diversity of cellular and organismal functions. Different from the majority of other intracellular membrane structures, mitochondria contain their own genetic materials that are capable of independent replication and inheritance. In this mini-review, we provide brief summaries of fungal mitochondrial genome structure, size, gene content, inheritance, and genetic variation. We pay special attention to the relative genetic polymorphisms of the mitochondrial vs nuclear genomes at the population level within individual fungal species. Among the 20 species/groups of species reviewed here, there is a range of variation among genes and species in the relative nuclear and mitochondrial genetic polymorphisms. Interestingly, most (15/20) showed a greater genetic diversity for nuclear genes and genomes than for mitochondrial genes and genomes, with the remaining five showing similar or slower nuclear genome genetic variations. This fungal pattern is different from the dominant pattern in animals, but more similar to that in plants. At present, the mechanisms for the variations among fungal species and the overall low level of mitochondrial sequence polymorphisms are not known. The increasing availability of population genomic data should help us reveal the potential genetic and ecological factors responsible for the observed variations.
Wang L., Zhang S., Li J., Zhang Y.
Environmental Microbiology scimago Q1 wos Q2
2018-09-01 citations by CoLab: 38 Abstract  
Nuclear genomes of two isolates of Hirsutella thompsonii, a pathogen causing epizootics among mites, have been reported; in contrast, its mitochondrial genome (mitogenome) has remained unknown, limiting our understanding of its evolution. Herein, we annotated the first complete mitogenome of H. thompsonii, which encoded all standard fungal mitochondrial genes plus three free-standing ORFs. Transcriptional analyses validated the expression of most conserved genes and revealed some interesting transcription patterns of mitochondrial genes. Phylogenetic analyses confirmed its placement in Ophiocordycipitaceae. Comparison of five different isolates originally collected from different locations revealed mitogenome size variations (60.3-66.4 kb) mainly due to different numbers of introns. A total of 15 intron loci were identified, with 11 existing in all 5 isolates and 4 showing presence/absence dynamics. These introns were most likely obtained through horizontal transfer from other fungal organisms. Those common introns might have been in H. thompsonii mitogenomes since the divergence of the fungus from its putative sister species H. minnesotensis, whereas those dynamic introns might have experienced 1-2 gain or loss events. We also detected evidence of degeneration for some introns. Overall, our study shed new insights into the mitochondrial evolution of the acaropathogenic fungus H. thompsonii.
Yan Z., Li Z., Yan L., Yu Y., Cheng Y., Chen J., Liu Y., Gao C., Zeng L., Sun X., Guo L., Xu J.
Mobile DNA scimago Q1 wos Q1 Open Access
2018-07-17 citations by CoLab: 16 PDF Abstract  
Homing endonuclease genes (HEGs) are widely distributed genetic elements in the mitochondrial genomes of a diversity of eukaryotes. Due to their ability to self-propagate within and between genomes, these elements can spread rapidly in populations. Whether and how such elements are controlled in genomes remains largely unknown. Here we report that the HEG-containing introns in the mitochondrial COX1 gene in Cryptococcus neoformans are mobile and that their spread in sexual crosses is influenced by mating type (MAT) α-specific homeodomain gene SXI1α. C. neoformans has two mating types, MATa and MATα. In typical crosses between strains of the two mating types, only a small portion (< 7%) of diploid fusants inherited the HEGs from the MATα parent. However, disruption of the SXI1α gene resulted in the majority (> 95%) of the diploid fusants inheriting the HEG-containing introns from the MATα parent, a frequency significantly higher than those of intronless mitochondrial genes. Our results suggest that SXI1α not only determines uniparental mitochondrial inheritance but also inhibits the spread of HEG-containing introns in the mitochondrial genome in C. neoformans.
Smith C.C., Tittes S., Mendieta J.P., Collier-zans E., Rowe H.C., Rieseberg L.H., Kane N.C.
2018-06-11 citations by CoLab: 38 Abstract  
Significance Alternative splicing is a form of genetic regulation that enables the production of multiple proteins from a single gene. This study is one of the first to investigate variation in alternative splicing during a major evolutionary transition. We analyzed RNA from wild and domesticated sunflowers to examine differentiation in splice patterns during domestication. We identified divergent splice forms that may be involved in seed development, a major target of selection during domestication. Genetic mapping revealed that relatively few regulatory switches affecting many proteins have been altered in domesticated sunflowers. Our findings indicate that differences in splicing arose rapidly during a recent evolutionary transition and appear to contribute to adaptation and population divergence.
Senkler J., Rugen N., Eubel H., Hegermann J., Braun H.
Current Biology scimago Q1 wos Q1
2018-05-03 citations by CoLab: 72 Abstract  
The mitochondrial oxidative phosphorylation (OXPHOS) system, which is based on the presence of five protein complexes, is in the very center of cellular ATP production. Complexes I to IV are components of the respiratory electron transport chain that drives proton translocation across the inner mitochondrial membrane. The resulting proton gradient is used by complex V (the ATP synthase complex) for the phosphorylation of ADP. Occurrence of complexes I to V is highly conserved in eukaryotes, with exceptions being restricted to unicellular parasites that take up energy-rich compounds from their hosts. Here we present biochemical evidence that the European mistletoe (Viscum album), an obligate semi-parasite living on branches of trees, has a highly unusual OXPHOS system. V. album mitochondria completely lack complex I and have greatly reduced amounts of complexes II and V. At the same time, the complexes III and IV form remarkably stable respiratory supercomplexes. Furthermore, complexome profiling revealed the presence of 150 kDa complexes that include type II NAD(P)H dehydrogenases and an alternative oxidase. Although the absence of complex I genes in mitochondrial genomes of mistletoe species has recently been reported, this is the first biochemical proof that these genes have not been transferred to the nuclear genome and that this respiratory complex indeed is not assembled. As a consequence, the whole respiratory chain is remodeled. Our results demonstrate that, in the context of parasitism, multicellular life can cope with lack of one of the OXPHOS complexes and give new insights into the life strategy of mistletoe species.
Brigham L.M., Allende L.M., Shipley B.R., Boyd K.C., Higgins T.J., Kelly N., Anderson Stewart C.R., Keepers K.G., Pogoda C.S., Lendemer J.C., Tripp E.A., Kane N.C.
2018-04-26 citations by CoLab: 8 Abstract  
Cladonia is among the most species-rich genera of lichens globally. Species in this lineage, commonly referred to as reindeer lichens, are ecologically important in numerous regions worldwide. In s...
Rastogi A., Maheswari U., Dorrell R.G., Vieira F.R., Maumus F., Kustka A., McCarthy J., Allen A.E., Kersey P., Bowler C., Tirichine L.
Scientific Reports scimago Q1 wos Q1 Open Access
2018-03-19 citations by CoLab: 107 PDF Abstract  
Diatoms are one of the most successful and ecologically important groups of eukaryotic phytoplankton in the modern ocean. Deciphering their genomes is a key step towards better understanding of their biological innovations, evolutionary origins, and ecological underpinnings. Here, we have used 90 RNA-Seq datasets from different growth conditions combined with published expressed sequence tags and protein sequences from multiple taxa to explore the genome of the model diatom Phaeodactylum tricornutum, and introduce 1,489 novel genes. The new annotation additionally permitted the discovery of extensive alternative splicing in diatoms, including intron retention and exon skipping, which increase the diversity of transcripts generated in changing environments. In addition, we have used up-to-date reference sequence libraries to dissect the taxonomic origins of diatom genes. We show that the P. tricornutum genome is enriched in lineage-specific genes, with up to 47% of the gene models present only possessing orthologues in other stramenopile groups. Finally, we have performed a comprehensive de novo annotation of repetitive elements showing novel classes of transposable elements such as SINE, MITE and TRIM/LARD. This work provides a solid foundation for future studies of diatom gene function, evolution and ecology.
Nimis P.L., Hafellner J., Roux C., Clerc P., Mayrhofer H., Martellos S., Bilovitz P.O.
MycoKeys scimago Q1 wos Q2 Open Access
2018-03-12 citations by CoLab: 76 Abstract  
This is the first attempt to provide an overview of the lichen diversity of the Alps, one of the biogegraphically most important and emblematic mountain systems worldwide. The checklist includes all lichenised species, plus a set of non- or doubtfully lichenised taxa frequently treated by lichenologists, excluding non-lichenised lichenicolous fungi. Largely based on recent national or regional checklists, it provides a list of all infrageneric taxa (with synonyms) hitherto reported from the Alps, with data on their distribution in eight countries (Austria, France, Germany, Liechtenstein, Monaco, Italy, Slovenia, Switzerland) and in 42 Operational Geographic Units, mostly corresponding to administrative subdivisions within the countries. Data on the main substrates and on the altitudinal distribution are also provided. A short note points to the main ecological requirements of each taxon and/or to open taxonomic problems. Particularly poorly known taxa are flagged and often provided with a short description, to attract the attention of specialists. The total number of infrageneric taxa is 3,163, including 117 non- or doubtfully lichenised taxa. The richness of the lichen biota fairly well corresponds with the percent of the Alpine area occupied by each country: Austria (2,337 taxa), Italy (2,169), France (2,028), Switzerland (1,835), Germany (1,168), Slovenia (890) and Lichtenstein (152), no lichen having ever been reported from Monaco. The number of poorly known taxa is quite high (604, 19.1% of the total), which indicates that, in spite of the Alps being one of the lichenologically most studied mountain systems worldwide, much work is still needed to reach a satisfactory picture of their real lichen diversity. Thirteen new combinations are proposed in the generaAgonimia,Aspicilia,Bagliettoa,Bellemerea,Carbonea,Lepra,Miriquidica,Polysporina,Protothelenella,PseudosagediaandThelidium.
Pogoda C.S., Keepers K.G., Lendemer J.C., Kane N.C., Tripp E.A.
Molecular Ecology scimago Q1 wos Q1
2018-03-01 citations by CoLab: 34 Abstract  
Symbioses among co-evolving taxa are often marked by genome reductions such as a loss of protein-coding genes in at least one of the partners as a means of reducing redundancy or intergenomic conflict. To explore this phenomenon in an iconic yet under-studied group of obligate symbiotic organisms, mitochondrial genomes of 22 newly sequenced and annotated species of lichenized fungi were compared to 167 mitochondrial genomes of nonlichenized fungi. Our results demonstrate the first broad-scale loss of atp9 from mitochondria of lichenized fungi. Despite key functions in mitochondrial energy production, we show that atp9 has been independently lost in three different lineages spanning 10 of the 22 studied species. A search for predicted, functional copies of atp9 among genomes of other symbionts involved in each lichen revealed the full-length, presumably functional copies of atp9 in either the photosynthetic algal partner or in other symbiotic fungi in all 10 instances. Together, these data yield evidence of an obligate symbiotic relationship in which core genomic processes have been streamlined, likely due to co-evolution.
Funk E.R., Adams A.N., Spotten S.M., Van Hove R.A., Whittington K.T., Keepers K.G., Pogoda C.S., Lendemer J.C., Tripp E.A., Kane N.C.
2018-01-02 citations by CoLab: 12 Abstract  
Known colloquially as ‘Old Man’s Beard’, Usnea is a genus of lichenized Ascomycete fungi characterized by having a fruticose growth form and cartilaginous central axis. The complete mitochondrial g...
Guha T.K., Wai A., Mullineux S., Hausner G.
2017-11-20 citations by CoLab: 20 Abstract  
Fungal mitochondrial genes are frequently noted for the presence of introns. These introns are self-splicing and can be assigned to either group I or II introns and they can encode open reading frames (ORFs). This study examines the introns present within the cytochrome b (cytb) gene of ascomycetes fungi. Cytochrome b gene sequences were sampled from GenBank and supplemented with our own data for species of Leptographium and Ophiostoma. Group I introns were encountered most frequently, many encoding either LAGLIDADG or GIY-YIG homing endonucleases (HEs). Numerous examples of different intron/ORF arrangements were observed including nested ORFs, multiple ORFs within a single intron and intron ORFs at various stages of erosion due to the accumulation of mutations. In addition, we noted one example of a nested intron and one complex group II intron that could potentially allow for alternative splicing. Documenting the distribution of introns within the same gene across a range of species allows for a better understanding of the evolution of introns and intronic ORFs. Intron landscapes also are a resource that can help in annotating genes and in bioprospecting for potentially active HEs, which are rare-cutting DNA endonucleases with applications in biotechnology.
Tripp E.A., Zhang N., Schneider H., Huang Y., Mueller G.M., Hu Z., Häggblom M., Bhattacharya D.
Trends in Ecology and Evolution scimago Q1 wos Q1
2017-08-01 citations by CoLab: 24 Abstract  
Much of the undescribed biodiversity on Earth is microbial, often in mutualistic or pathogenic associations. Physically associated and coevolving life forms comprise a symbiome. We propose that systematics research can accelerate progress in science by introducing a new framework for phylogenetic analysis of symbiomes, here termed SYMPHY (symbiome phylogenetics).
Tillich M., Lehwark P., Pellizzer T., Ulbricht-Jones E.S., Fischer A., Bock R., Greiner S.
Nucleic Acids Research scimago Q1 wos Q1 Open Access
2017-05-09 citations by CoLab: 2352 PDF Abstract  
We have developed the web application GeSeq (https://chlorobox.mpimp-golm.mpg.de/geseq.html) for the rapid and accurate annotation of organellar genome sequences, in particular chloroplast genomes. In contrast to existing tools, GeSeq combines batch processing with a fully customizable reference sequence selection of organellar genome records from NCBI and/or references uploaded by the user. For the annotation of chloroplast genomes, the application additionally provides an integrated database of manually curated reference sequences. GeSeq identifies genes or other feature-encoding regions by BLAT-based homology searches and additionally, by profile HMM searches for protein and rRNA coding genes and two de novo predictors for tRNA genes. These unique features enable the user to conveniently compare the annotations of different state-of-the-art methods, thus supporting high-quality annotations. The main output of GeSeq is a GenBank file that usually requires only little curation and is instantly visualized by OGDRAW. GeSeq also offers a variety of optional additional outputs that facilitate downstream analyzes, for example comparative genomic or phylogenetic studies.
Kumar S., Stecher G., Suleski M., Hedges S.B.
Molecular Biology and Evolution scimago Q1 wos Q1 Open Access
2017-04-06 citations by CoLab: 2047 PDF Abstract  
Evolutionary information on species divergence times is fundamental to studies of biodiversity, development, and disease. Molecular dating has enhanced our understanding of the temporal patterns of species divergences over the last five decades, and the number of studies is increasing quickly due to an exponential growth in the available collection of molecular sequences from diverse species and large number of genes. Our TimeTree resource is a public knowledge-base with the primary focus to make available all species divergence times derived using molecular sequence data to scientists, educators, and the general public in a consistent and accessible format. Here, we report a major expansion of the TimeTree resource, which more than triples the number of species (>97,000) and more than triples the number of studies assembled (>3,000). Furthermore, scientists can access not only the divergence time between two species or higher taxa, but also a timetree of a group of species and a timeline that traces a species' evolution through time. The new timetree and timeline visualizations are integrated with display of events on earth and environmental history over geological time, which will lead to broader and better understanding of the interplay of the change in the biosphere with the diversity of species on Earth. The next generation TimeTree resource is publicly available online at http://www.timetree.org.
Simmons M.P., Bachy C., Sudek S., van Baren M.J., Sudek L., Ares M., Worden A.Z.
Molecular Biology and Evolution scimago Q1 wos Q1 Open Access
2015-05-20 citations by CoLab: 50 PDF Abstract  
Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence-absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica--a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of this sentinel marine alga.
Li H., Liang T., Liu Y., Wang P., Wang S., Zhao M., Zhang Y.
2024-08-19 citations by CoLab: 0 PDF Abstract  
Limited exploration in fungal mitochondrial genetics has uncovered diverse inheritance modes. The mitochondrial genomes are inherited uniparentally in the majority of sexual eukaryotes, our discovery of persistent mitochondrial heterogeneity within the natural population of the basidiomycete fungus Thelephora ganbajun represents a significant advance in understanding mitochondrial inheritance and evolution in eukaryotes. Here, we present a comprehensive analysis by sequencing and assembling the complete mitogenomes of 40 samples exhibiting diverse cox1 heterogeneity patterns from various geographical origins. Additionally, we identified heterogeneous variants in the nad5 gene, which, similar to cox1, displayed variability across multiple copies. Notably, our study reveals a distinct prevalence of introns and homing endonucleases in these heterogeneous genes. Furthermore, we detected potential instances of horizontal gene transfer involving homing endonucleases. Population genomic analyses underscore regional variations in mitochondrial genome composition among natural samples exhibiting heterogeneity. Thus, polymorphisms in heterogeneous genes, introns, and homing endonucleases significantly influence mitochondrial structure, structural variation, and evolutionary dynamics in this species. This study contributes valuable insights into mitochondrial genome architecture, population dynamics, and the evolutionary implications of mitochondrial heterogeneity in sexual eukaryotes.
Feng B., Li Y., Liu H., Steenwyk J.L., David K.T., Tian X., Xu B., Goncalves C., Opulente D.A., LaBella A.L., Harrison M., Wolters J.F., Shao S., Chen Z., Fisher K.J., et. al.
2024-06-06 citations by CoLab: 2 Abstract  
AbstractGene gains and losses are a major driver of genome evolution; their precise characterization can provide insights into the origin and diversification of major lineages. Here, we examined gene family evolution of 1,154 genomes from nearly all known species in the medically and technologically important yeast subphylum Saccharomycotina. We found that yeast gene family and genome evolution are distinct from plants, animals, and filamentous ascomycetes and are characterized by small genome sizes and smaller gene numbers but larger gene family sizes. Faster-evolving lineages (FELs) in yeasts experienced significantly higher rates of gene losses—commensurate with a narrowing of metabolic niche breadth—but higher speciation rates than their slower-evolving sister lineages (SELs). Gene families most often lost are those involved in mRNA splicing, carbohydrate metabolism, and cell division and are likely associated with intron loss, metabolic breadth, and non-canonical cell cycle processes. Our results highlight the significant role of gene family contractions in the evolution of yeast metabolism, genome function, and speciation, and suggest that gene family evolutionary trajectories have differed markedly across major eukaryotic lineages.
Malik M., Malik F., Fatma T., Qasim Hayat M., Jamal A., Gul A., Faraz Bhatti M.
Gene scimago Q2 wos Q2
2024-06-01 citations by CoLab: 1 Abstract  
Penicillium expansum is an important phytopathogenic fungus that causes blue mold disease. In this study, the novel mitochondrial genome of P. expansum was sequenced, assembled, annotated, and compared with the previously published Penicillium mitogenomes. P. expansum mitogenome is composed of circular DNA molecules with a genome size of 25,496 bp. It encodes 16 protein-encoding genes (PCGs), two rRNA genes, and 25 tRNA genes. Comparative analysis with six other Penicillium species revealed that gene length, GC content, AT skew, and GC skew were variable among the core protein-coding genes. The Penicillium species' gene synteny analysis identified several gene rearrangements. Among the core 15 PCGs, atp8 had the lowest K2P genetic distance, which shows that this gene is highly conserved. The Ka/Ks value of most PCGs was less than 1, which shows that these genes have undergone purifying selection. Phylogenetic analysis based on 14 concatenated core mitochondrial genes revealed that P. expansum shares a close relationship with P. solitum. This study served as a first report on the complete mitochondrial genome of P. expansum and its comparative analysis that will contribute to population genetics and rapid evolutionary studies among Penicillium species.
White K.H., Keepers K., Kane N., Lendemer J.C.
Genome Biology and Evolution scimago Q1 wos Q2 Open Access
2024-04-30 citations by CoLab: 2 PDF Abstract  
Abstract The genetic architecture of mating-type loci in lichen-forming fungi has been characterized in very few taxa. Despite the limited data, and in contrast to all other major fungal lineages, arrangements that have both mating-type alleles in a single haploid genome have been hypothesized to be absent from the largest lineage of lichen-forming fungi, the Lecanoromycetes. We report the discovery of both mating-type alleles from the haploid genomes of three species within this group. Our results demonstrate that Lecanoromycetes are not an outlier among Ascomycetes.
Mamut R., Anwar G., Wang L., Fang J.
Journal of Applied Genetics scimago Q3 wos Q3
2023-10-11 citations by CoLab: 0 Abstract  
In the present study, the mitochondrial genomes of Peltigera elisabethae and P. polydactylon were sequenced and assembled. The two mitogenomes were composed of circular DNA molecules, with sizes of 64,034 bp and 59,208 bp, respectively. Comparative analysis showed that the genome size, GC content, GC skew, and AT skew varied between the two mitochondrial genomes. In codon analysis, phenylalanine (Phe), isoleucine (Ile), and leucine (Leu) were most frequently used in six Peltigera genomes. Evolutionary analysis showed that all 14 protein-coding genes (PCGs) were subject to purifying selection in the six Peltigera species. Regarding gene rearrangement, the PCGs of Peltigera had the same gene sequence and gene content, and a few intron sequences and spacer sequences were rearranged in Peltigera. In the phylogenetic analysis, we used Bayesian and ML methods to construct a phylogenetic tree. Two phylogenetic trees with consistent topology with high support indicate that mitochondrial genes were reliable molecular markers for analyzing the phylogenetic relationships. The present study enriches the mitochondrial genome data of Peltigera and promotes further understanding of the genetics and evolution of the Peltigera genus.
Fang J., Mamut R., Wang L., Anwar G.
PLoS ONE scimago Q1 wos Q1 Open Access
2023-05-23 citations by CoLab: 1 PDF Abstract  
In this study, the complete mitochondrial genome of Cladonia subulata (L.) FH Wigg was sequenced and assembled and then compared with those of other Cladonia species. The mitogenome of Cladonia subulata, the type species of Cladonia, consisted of a circular DNA molecule of 58,895 bp 44 genes (15 protein-coding genes, 2 rRNA genes, and 27 tRNA genes). The base composition had shown an obvious AT preference, and all 27 tRNA genes formed a typical clover structure. Comparison with other 7 Cladonia species indicated that the duplication/loss of tRNAs had occurred during evolution, and introns appeared to explain the variation in cox1 genes in Cladonia, the mitochondrial genome tends to be generally conservative and local dynamic changes. Repeat sequences were mainly located in gene intervals, which were mainly distributed among intergenic spacers and may cause rearrangement of the mitogenome. The phylogenetic results showed that Cladonia subulata and C. polycarpoides were assigned to the Cladonia Subclade. The results add to the available mitochondrial genome sequence information of Cladonia subulata, provide basic data for the systematic development, resource protection, and genetic diversity research in Cladonia subulata, and also provide theoretical support for further genomic research of lichens.
Hoffman J.R., Karol K.G., Ohmura Y., Pogoda C.S., Keepers K.G., McMullin R.T., Lendemer J.C.
Mycologia scimago Q1 wos Q2
2023-02-03 citations by CoLab: 1
Lendemer J.C., McMullin R.T.
Taxon scimago Q1 wos Q2
2022-04-25 citations by CoLab: 1 Abstract  
Alectoria fallacina, described by the prolific 20th century lichenologist Josef Motyka, is a threatened species narrowly endemic to the Appalachian Mountains of eastern North America. The production of a unique unidentified fatty acid as the main secondary metabolite chemically separates A. fallacina from its congeners, especially the morphologically similar A. sarmentosa. Here we show that while A. fallacina and A. sarmentosa are entirely allopatric, the type collection of A. fallacina is a mixture of the two taxa and the holotype is A. sarmentosa. Detailed analyses of the original material support the conclusion that the lichen in the holotype packet was taken from another collection, and is in direct conflict with both the protologue and the current application of the name. We assert that the lichen currently assumed to be the holotype of A. fallacina was erroneously placed in the holotype packet by Motyka after the description, while the actual holotype lichen was likely retained in his personal herbarium now deposited at LBL. This highly unusual scenario is supported by other cases from the literature pertaining to the types of names published by this author. Based on the fact that the currently accepted holotype of A. fallacina directly conflicts with the protologue, that all evidence suggests it could not have been derived from the type locality, and the known working methods of both the collector of the type (Gunnar Degelius) as well as the describing author (Motyka), the holotype of A. fallacina is treated as effectively lost and the name is lectotypified with an isotype that unambiguously represents A. fallacina.
Wyrębek J., Molcan T., Myszczyński K., van Diepeningen A.D., Stakheev A.A., Żelechowski M., Bilska K., Kulik T.
Frontiers in Microbiology scimago Q1 wos Q2 Open Access
2021-08-31 citations by CoLab: 4 PDF Abstract  
Fungal complexes are often composed of morphologically nearly indistinguishable species with high genetic similarity. However, despite their close relationship, they can exhibit distinct phenotypic differences in pathogenicity and production of mycotoxins. Many plant pathogenic and toxigenic fungi have been shown to consist of such cryptic species. Identification of cryptic species in economically important pathogens has added value in epidemiologic studies and provides opportunities for better control. Analysis of mitochondrial genomes or mitogenomics opens up dimensions for improved diagnostics of fungi, especially when efficient recovery of DNA is problematic. In comparison to nuclear DNA, mitochondrial DNA (mtDNA) can be amplified with improved efficacy due to its multi-copy nature. However, to date, only a few studies have demonstrated the usefulness of mtDNA for identification of cryptic species within fungal complexes. In this study, we explored the value of mtDNA for identification of one of the most important cereal pathogens Fusarium graminearum sensu stricto (F.g.). We found that homing endonucleases (HEGs), which are widely distributed in mitogenomes of fungi, display small indel polymorphism, proven to be potentially species specific. The resulting small differences in their lengths may facilitate further differentiation of F.g. from the other cryptic species belonging to F. graminearum species complex. We also explored the value of SNP analysis of the mitogenome for typing F.g. The success in identifying F.g. strains was estimated at 96%, making this tool an attractive complement to other techniques for identification of F.g.
Mukhopadhyay J., Hausner G.
Cells scimago Q1 wos Q2 Open Access
2021-08-06 citations by CoLab: 31 PDF Abstract  
Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.
Lendemer J.C., Keepers K.G.
Bryologist scimago Q2 wos Q4
2021-07-26 citations by CoLab: 1 Abstract  
Bacidia depriestiana is described as new to science based on material from the southern Appalachian Mountains of eastern North America. The species has a granular to minutely areolate thallus, with minute, erumpent soralia, produces atranorin and zeorin, and is not known to produce apothecia. The combination of chemistry and thallus type appears to be unique within the genus. Originally identified as Lecanora nothocaesiella, the species was recognized as distinct in conjunction with study of a large metagenomic dataset for lichens from the region. In connection with obtaining molecular loci use for phylogenetic placement of the material, the mitochondrial genome was assembled, found to be 38,546 bp in length, and encoded for the full suite of protein coding genes previously found in lichen fungi, with the exception of atp9.
Kwak Y.
Microorganisms scimago Q2 wos Q2 Open Access
2021-07-23 citations by CoLab: 11 PDF Abstract  
Members of the genus Trichoderma (Hypocreales), widely used as biofungicides, biofertilizers, and as model fungi for the industrial production of CAZymes, have actively been studied for the applications of their biological functions. Recently, the study of the nuclear genomes of Trichoderma has expanded in the directions of adaptation and evolution to gain a better understanding of their ecological traits. However, Trichoderma’s mitochondria have received much less attention despite mitochondria being the most necessary element for sustaining cell life. In this study, a mitogenome of the fungus Trichoderma harzianum CBS 226.95 was assembled de novo. A 27,632 bp circular DNA molecule was revealed with specific features, such as the intronless of all core PCGs, one homing endonuclease, and a putative overlapping tRNA, on a closer phylogenetic relationship with T. reesei among hypocrealean fungi. Interestingly, the mitogenome of T. harzianum CBS 226.95 was predicted to have evolved earlier than those of other Trichoderma species and also assumed with a selection pressure in the cox3. Considering the bioavailability, both for the ex-neotype strain of the T. harzianum species complex and the most globally representative commercial fungal biocontrol agent, our results on the T. harzianum CBS 226.95 mitogenome provide crucial information which will be helpful criteria in future studies on Trichoderma.
Tagirdzhanova G., McCutcheon J.P., Spribille T.
Molecular Ecology scimago Q1 wos Q1
2021-07-07 citations by CoLab: 4 Abstract  
Lichen fungi live in a symbiotic association with unicellular phototrophs and most have no known aposymbiotic stage. A recent study in Molecular Ecology postulated that some of them have lost mitochondrial oxidative phosphorylation and rely on their algal partners for ATP. This claim originated from an apparent lack of ATP9, a gene encoding one subunit of ATP synthase, from a few mitochondrial genomes. Here, we show that while these fungi indeed have lost the mitochondrial ATP9, each retain a nuclear copy of this gene. Our analysis reaffirms that lichen fungi produce their own ATP.
de Melo Teixeira M., Lang B.F., Matute D.R., Stajich J.E., Barker B.M.
G3: Genes, Genomes, Genetics scimago Q1 wos Q3 Open Access
2021-04-19 citations by CoLab: 9 PDF Abstract  
Abstract Fungal mitochondrial genomes encode genes involved in crucial cellular processes, such as oxidative phosphorylation and mitochondrial translation, and the molecule has been used as a molecular marker for population genetics studies. Coccidioides immitis and C. posadasii are endemic fungal pathogens that cause coccidioidomycosis in arid regions across both American continents. To date, approximately 150 Coccidioides isolates have been sequenced to infer patterns of variation in nuclear genomes. However, less attention has been given to the mitochondrial genomes of Coccidioides. In this report, we describe the assembly and annotation of mitochondrial reference genomes for two representative strains of C. posadasii and C. immitis, as well as assess population variation among 77 selected genomes. The sizes of the circular-mapping molecules are 68.2 Kb in C. immitis and 75.1 Kb in C. posadasii. We identify 14 mitochondrial protein-coding genes common to most fungal mitochondria, which are largely syntenic across different populations and species of Coccidioides. Both Coccidioides species are characterized by a large number of group I and II introns, harboring twice the number of elements as compared to closely related Onygenales. The introns contain complete or truncated ORFs with high similarity to homing endonucleases of the LAGLIDADG and GIY-YIG families. Phylogenetic comparisons of mitochondrial and nuclear genomes show extensive phylogenetic discordance suggesting that the evolution of the two types of genetic material is not identical. This work represents the first assessment of mitochondrial genomes among isolates of both species of Coccidioides, and provides a foundation for future functional work.
Tagirdzhanova G., McCutcheon J.P., Spribille T.
2021-03-17 citations by CoLab: 1 Abstract  
AbstractLichen fungi live in a symbiotic association with unicellular phototrophs and have no known aposymbiotic stage. A recent study postulated that some of them have lost mitochondrial oxidative phosphorylation and rely on their algal partners for ATP. This claim originated from an apparent lack of ATP9, a gene encoding one subunit of ATP synthase, from a few mitochondrial genomes. Here we show that while these fungi indeed have lost the mitochondrial ATP9, each retain a nuclear copy of this gene. Our analysis reaffirms that lichen fungi produce their own ATP.

Top-30

Journals

1
2
3
1
2
3

Publishers

1
2
3
4
5
1
2
3
4
5
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?