Journal of Computational Chemistry, volume 38, issue 10, pages 645-658

Reliable and efficient reaction path and transition state finding for surface reactions with the growing string method

Publication typeJournal Article
Publication date2017-01-28
scimago Q2
SJR0.738
CiteScore6.6
Impact factor3.4
ISSN01928651, 1096987X
PubMed ID:  28130776
General Chemistry
Computational Mathematics
Abstract
The computational challenge of fast and reliable transition state and reaction path optimization requires new methodological strategies to maintain low cost, high accuracy, and systematic searching capabilities. The growing string method using internal coordinates has proven to be highly effective for the study of molecular, gas phase reactions, but difficulties in choosing a suitable coordinate system for periodic systems has prevented its use for surface chemistry. New developments are therefore needed, and presented herein, to handle surface reactions which include atoms with large coordination numbers that cannot be treated using standard internal coordinates. The double-ended and single-ended growing string methods are implemented using a hybrid coordinate system, then benchmarked for a test set of 43 elementary reactions occurring on surfaces. These results show that the growing string method is at least 45% faster than the widely used climbing image-nudged elastic band method, which also fails to converge in several of the test cases. Additionally, the surface growing string method has a unique single-ended search method which can move outward from an initial structure to find the intermediates, transition states, and reaction paths simultaneously. This powerful explorative feature of single ended-growing string method is demonstrated to uncover, for the first time, the mechanism for atomic layer deposition of TiN on Cu(111) surface. This reaction is found to proceed through multiple hydrogen-transfer and ligand-exchange events, while formation of H-bonds stabilizes intermediates of the reaction. Purging gaseous products out of the reaction environment is the driving force for these reactions. © 2017 Wiley Periodicals, Inc.
Found 
Found 

Top-30

Journals

1
2
3
4
5
6
1
2
3
4
5
6

Publishers

2
4
6
8
10
12
14
2
4
6
8
10
12
14
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?