Open Access
Open access
Advanced Science, volume 9, issue 17, pages 2200617

Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life

1
 
Institute of Technical and Macromolecular Chemistry RWTH Aachen University Worringerweg 2 Aachen 52074 Germany
2
 
DWI – Leibniz Institute for Interactive Materials Forckenbeckstraße 50 Aachen 52074 Germany
3
 
Chair of Biotechnology RWTH Aachen University Worringerweg 3 Aachen 52074 Germany
6
 
Institute for Bioengineering of Catalonia (IBEC) Carrer de Baldiri Reixac, 10, 12 Barcelona 08028 Spain
7
 
Institució Catalana de Recerca I Estudis Avançats (ICREA) Passeig Lluís Companys 23 Barcelona 08010 Spain
Publication typeJournal Article
Publication date2022-04-07
Journal: Advanced Science
Quartile SCImago
Q1
Quartile WOS
Q1
Impact factor15.1
ISSN21983844
Medicine (miscellaneous)
General Chemical Engineering
General Physics and Astronomy
General Materials Science
General Engineering
Biochemistry, Genetics and Molecular Biology (miscellaneous)
Abstract
The construction of biomembranes that faithfully capture the properties and dynamic functions of cell membranes remains a challenge in the development of synthetic cells and their application. Here a new concept for synthetic cell membranes based on the self‐assembly of amphiphilic comb polymers into vesicles, termed ionic combisomes (i‐combisomes) is introduced. These combs consist of a polyzwitterionic backbone to which hydrophobic tails are linked by electrostatic interactions. Using a range of microscopies and molecular simulations, the self‐assembly of a library of combs in water is screened. It is discovered that the hydrophobic tails form the membrane's core and force the backbone into a rod conformation with nematic‐like ordering confined to the interface with water. This particular organization resulted in membranes that combine the stability of classic polymersomes with the biomimetic thickness, flexibility, and lateral mobility of liposomes. Such unparalleled matching of biophysical properties and the ability to locally reconfigure the molecular topology of its constituents enable the harboring of functional components of natural membranes and fusion with living bacteria to “hijack” their periphery. This provides an almost inexhaustible palette to design the chemical and biological makeup of the i‐combisomes membrane resulting in a powerful platform for fundamental studies and technological applications.

Citations by journals

1
Advanced Materials
Advanced Materials, 1, 25%
Advanced Materials
1 publication, 25%
Langmuir
Langmuir, 1, 25%
Langmuir
1 publication, 25%
Nachrichten aus der Chemie
Nachrichten aus der Chemie, 1, 25%
Nachrichten aus der Chemie
1 publication, 25%
Macromolecular Chemistry and Physics
Macromolecular Chemistry and Physics, 1, 25%
Macromolecular Chemistry and Physics
1 publication, 25%
1

Citations by publishers

1
2
3
Wiley
Wiley, 3, 75%
Wiley
3 publications, 75%
American Chemical Society (ACS)
American Chemical Society (ACS), 1, 25%
American Chemical Society (ACS)
1 publication, 25%
1
2
3
  • We do not take into account publications that without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.
Metrics
Share
Cite this
GOST |
Cite this
GOST Copy
Wagner S. M. et al. Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life // Advanced Science. 2022. Vol. 9. No. 17. p. 2200617.
GOST all authors (up to 50) Copy
Wagner S. M., Quandt J., Söder D., Garay Sarmiento M., Joseph A., Petrovskii V. S., Witzdam L., Hammoor T., Steitz P., Haraszti T., Potemkin I. I., Kostina N. Yu., Herrmann A., Rodriguez Emmenegger C. Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life // Advanced Science. 2022. Vol. 9. No. 17. p. 2200617.
RIS |
Cite this
RIS Copy
TY - JOUR
DO - 10.1002/advs.202200617
UR - https://doi.org/10.1002%2Fadvs.202200617
TI - Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life
T2 - Advanced Science
AU - Wagner, Stephan M
AU - Quandt, Jonas
AU - Söder, Dominik
AU - Garay Sarmiento, Manuela
AU - Joseph, Anton
AU - Petrovskii, Vladislav S
AU - Witzdam, Lena
AU - Hammoor, Thomas
AU - Steitz, Philipp
AU - Haraszti, T.
AU - Potemkin, Igor I.
AU - Kostina, Nina Yu
AU - Herrmann, Andreas
AU - Rodriguez Emmenegger, Cesar
PY - 2022
DA - 2022/04/07 00:00:00
PB - Wiley
SP - 2200617
IS - 17
VL - 9
PMID - 35393756
SN - 2198-3844
ER -
BibTex |
Cite this
BibTex Copy
@article{2022_Wagner,
author = {Stephan M Wagner and Jonas Quandt and Dominik Söder and Manuela Garay Sarmiento and Anton Joseph and Vladislav S Petrovskii and Lena Witzdam and Thomas Hammoor and Philipp Steitz and T. Haraszti and Igor I. Potemkin and Nina Yu Kostina and Andreas Herrmann and Cesar Rodriguez Emmenegger},
title = {Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life},
journal = {Advanced Science},
year = {2022},
volume = {9},
publisher = {Wiley},
month = {apr},
url = {https://doi.org/10.1002%2Fadvs.202200617},
number = {17},
pages = {2200617},
doi = {10.1002/advs.202200617}
}
MLA
Cite this
MLA Copy
Wagner, Stephan M., et al. “Ionic Combisomes: A New Class of Biomimetic Vesicles to Fuse with Life.” Advanced Science, vol. 9, no. 17, Apr. 2022, p. 2200617. https://doi.org/10.1002%2Fadvs.202200617.
Found error?