31 October 2022, 21:30

Физики создали новую искусственный аналог клеточной мембраны

Ученые физического факультета МГУ совместно с коллегами из университета Ахена (DWI, RWTH) сконструировали аналог мембраны клетки из особого гребнеобразного полимера и описали его свойства с помощью компьютерного моделирования. Полученная мембрана обладала гибкостью и адаптивностью, имела толщину, близкую к биологической клеточной мембране, а также смогла образовать гибридную протоклетку путем слияния с мембранами липосомы и бактерии. Полученный результат открывает новые перспективы в создании искусственной клетки и поможет улучшить метод адресной доставки лекарств.

Физики создали новую искусственный аналог клеточной мембраны
Концепция комбисомы: a) структура и свойства двойного слоя на основе полимера b) внедрение в слой комбисомы липидов и образование рафтоподобных доменов c) внедрение в двойной слой поровых белков d) слияние с липосомой e) слияние с клеточной мембраной

Уже длительное время ученые стараются искусственно воссоздать клеточную мембрану. Можно говорить об успехе, если такая конструкция устойчива к внешним воздействиям, гибка, близка по толщине к биологическим мембранам, а также в нее можно встроить особые белки, обеспечивающие избирательное пропускание. 

Одной из самых простых подобных структур является липосома — замкнутый в сферу бислой (везикула) из липидов, образующийся в растворе благодаря наличию у липидов гидрофильных и гидрофобных частей. Липосомы часто тонкие и обладают хорошим пропусканием, но при этом недостаточно устойчивы к термическому и механическому воздействию. Тем не менее, до сих пор их исследуют в качестве, например, наноконтейнеров для лекарств. 

Еще один способ создать везикулу — использовать диблоксополимеры, состоящие из гидрофильных и гидрофобных блоков. При взаимодействии с раствором они образуют везикулы, которые получили название «полимерсомы». Они устойчивые и прочные, однако стенки мембраны получались слишком толстыми и непроницаемыми. Следующим этапом стало создание везикул из янусоподных дендримеров — коротких и ветвистых полимеров. 

Ученые из университета Ахена подобрали такой дендример, чтобы полученные везикулы обладали свойствами, наиболее близкими к требуемым. Везикулы назвали «дендримерсомами», они были перспективными для дальнейшего изучения, однако процесс синтеза янусоподных дендримеров был слишком сложен. Теперь же физики МГУ придумали новый подход с использованием гребнеобразного полимера, собирающегося в везикулы в растворе и с более простым способом получения.

Сначала в раствор заряженного полимера (полиэлектролит) добавляли противоположно заряженные фосфолипиды (основные компоненты природных клеточных мембран), и в результате получался гребнеобразный полимер. Его отличительной особенностью являлось то, что связи между звеньями являются не химическими, как обычно, а физическими (за счет электростатических взаимодействий) — менее сильными, но все равно достаточно прочными. В дальнейшем это позволило полученной визикуле быть более гибкой.

При добавлении полученного полимера в воду образовались везикулы, названные комбисомами (от англ. «comb» — гребень). Такие структуры обладали устойчивостью, гибкостью и толщиной, близкой к биологической клеточной мембране. Кроме этого, комбисомы оказались способны образовывать гибридную протоклетку путем слияния с мембранами липосомы и бактерии. Для исследования микроскопических свойств и внутренней структуры везикул в воде ученые провели компьютерное моделирование.

«Мы изучали участок мембраны, так как вычисления являются затратными, ведь рассчитывается поведение огромного числа частиц. В результате моделирования на суперкомпьютере “Ломоносов-2” мы выяснили, что полиэлектролиты образуют нематический порядок, то есть вытягиваются вдоль поверхности мембраны в прямые стержни. Еще мы выяснили, что упорядоченность липидов во внутренней части мембраны зависит от плотности заряда в полиэлектролите. Это связано с тем, что в последнем она ниже, чем в липидах, и чем меньше окажется разница, тем меньше флуктуаций будет в полученной структуре. Моделирование помогло нам лучше понять физику происходящих процессов», — прокомментировал сотрудник лаборатории теории полимерных систем и «мягких» сред физического факультета МГУ, к.ф.-м.н. Владислав Петровский.

Ученые надеются, что достижение комбисомами свойств мембраны реальной клетки приблизит создание полностью искусственной клетки.

Source:  Пресс-служба МГУ

News article publications

Read also

Побочный эффект радиотерапии воспроизвели в лаборатории с применением протонов
Ученые создали на мышах экспериментальную модель самого распространенного побочного эффекта при радиотерапии онкологических заболеваний — радиационного дерматита. На сегодняшний день специфического лечения для него не существует, поэтому исследование может стать первым шагом к поиску эффективных препаратов.
Biophysics
Oncology
Radiology
20 January 2024
Усовершенствован анализ качества растворителей литий-ионных аккумуляторов
Литий-ионные аккумуляторы нашли широкое применение в нашей жизни: от бытовой техники и электромобилей до накопителей энергии в системах жизнеобеспечения труднодоступных районов. Они хорошо зарекомендовали себя в работе, имея высокую плотность энергии и низкий саморазряд. В достижении наилучших характеристик аккумуляторов огромную роль играет состав раствора электролита. Ученые МФТИ и ОИВТ РАН разработали более быстрый и надежный метод проверки состава на молекулярном уровне, который может обеспечить максимальный КПД.
"Green" chemistry
"Green" technologies
Electrochemistry
Molecular modeling
19 October 2023
Обнаружено место связывания лекарства у рецепторов
Ученые МФТИ сравнили структуры дигидрокси- и цистеинил-лейкотриеновых рецепторов. Они играют важную роль в воспалительных процессах в организме человека, включая астму, аллергический ринит, крапивницу и некоторые виды рака. Несмотря на структурное сходство лейкотриенов, эти два типа жирных молекул осуществляют свои функции, взаимодействуя с двумя различными семействами рецепторов, работающих в клеточной мембране. Исследование открывает путь к новым терапевтическим стратегиям избирательного воздействия на отдельные рецепторы.
Biophysics
Chemical Biology
Structural Biology
7 October 2023
Биологи изучили динамику важного для регуляции генома димера гистоновых белков
Оказалось, большую роль играет изгибание как самого димера, так и ДНК, с которой он взаимодействует
Molecular Biology
Molecular modeling
26 May 2023
Растения подготавливаются к сложным условиям с помощью электрических импульсов
Под действием засухи, жары или слишком яркого света происходит гиперполяризация, распространяющаяся по тканям растения. Такой сигнал приводит к подавлению фотосинтеза, чтобы растение не тратило энергию на рост, а готовилось к переходу в энергосберегающий режим
Biophysics
Electrophysiology
Plant physiology
16 May 2023
ДНК-аптамерные метки помогли видеть глиому прямо во время операции на мозге
Они со 100% избирательностью связывались с клетками опухоли и при этом были безопасны для подопытных животных
Molecular Biology
Molecular modeling
Oncology
10 April 2023