Open Access
Open access
том 9 издание 36 страницы 1901785

Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution

Qing Wang 1, 2, 3
Jean Vergnet 1, 2, 4
Francois Rabuel 4, 6
M. Chakir 3
Тип публикацииJournal Article
Дата публикации2019-08-09
scimago Q1
wos Q1
БС1
SJR8.378
CiteScore40.7
Impact factor26.0
ISSN16146832, 16146840
General Materials Science
Renewable Energy, Sustainability and the Environment
Краткое описание
Although being less competitive energy density-wise, Na-ion batteries are serious alternatives to Li-ion ones for applications where cost and sustainability dominate. O3-type sodium layered oxides could partially overcome the energy limitation, but their practical use is plagued by a reaction process that enlists numerous phase changes and volume variations while additionally being moisture sensitive. Here, it is shown that the double substitution of Ti for Mn and Cu for Ni in O3-NaNi0.5−yCuyMn0.5− zTizO2 can alleviate most of these issues. Among this series, electrodes with specific compositions are identified that can reversibly release and uptake ≈0.9 sodium per formula unit via a smooth voltage-composition profile enlisting minor lattice volume changes upon cycling as opposed to ΔV/V≈23% in the parent NaNi0.5Mn0.5O2 while showing a greater resistance against moisture. The positive attributes of substitution are rationalized by structure considerations supported by density functional theory (DFT) calculations. Electrodes with sustained capacities of ≈180 mAh g−1 are successfully implemented into 18 650 Na-ion cells having greater performances, energy density-wise (≈250 Wh L−1), than today's Na3V2(PO4)2F3/HC Na-ion technology which excels in rate capabilities. These results constitute a step forward in increasing the practicality of Na-ion technology with additional opportunities for applications in which energy density prevails over rate capability.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
14
16
Advanced Functional Materials
15 публикаций, 6.85%
Energy Storage Materials
13 публикаций, 5.94%
Chemical Engineering Journal
10 публикаций, 4.57%
Advanced Energy Materials
9 публикаций, 4.11%
Journal of Materials Chemistry A
9 публикаций, 4.11%
ACS applied materials & interfaces
8 публикаций, 3.65%
Journal of Alloys and Compounds
8 публикаций, 3.65%
Journal of Energy Storage
6 публикаций, 2.74%
Advanced Materials
6 публикаций, 2.74%
ACS Nano
6 публикаций, 2.74%
ACS Applied Energy Materials
6 публикаций, 2.74%
Journal of Energy Chemistry
5 публикаций, 2.28%
Angewandte Chemie
5 публикаций, 2.28%
Angewandte Chemie - International Edition
5 публикаций, 2.28%
Chemistry of Materials
4 публикации, 1.83%
ACS Energy Letters
4 публикации, 1.83%
Batteries & Supercaps
4 публикации, 1.83%
Materials Today Energy
4 публикации, 1.83%
Journal of the Electrochemical Society
3 публикации, 1.37%
Materials Today
3 публикации, 1.37%
Nano Energy
3 публикации, 1.37%
Journal of Power Sources
3 публикации, 1.37%
Battery Energy
3 публикации, 1.37%
Nano Letters
3 публикации, 1.37%
Ionics
2 публикации, 0.91%
Nature Communications
2 публикации, 0.91%
Journal of Solid State Chemistry
2 публикации, 0.91%
Journal of Physical Chemistry C
2 публикации, 0.91%
Journal of the American Chemical Society
2 публикации, 0.91%
2
4
6
8
10
12
14
16

Издатели

10
20
30
40
50
60
70
80
Elsevier
75 публикаций, 34.25%
Wiley
61 публикация, 27.85%
American Chemical Society (ACS)
39 публикаций, 17.81%
Royal Society of Chemistry (RSC)
19 публикаций, 8.68%
Springer Nature
12 публикаций, 5.48%
The Electrochemical Society
3 публикации, 1.37%
IOP Publishing
3 публикации, 1.37%
MDPI
2 публикации, 0.91%
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
2 публикации, 0.91%
Pleiades Publishing
1 публикация, 0.46%
American Association for the Advancement of Science (AAAS)
1 публикация, 0.46%
AIP Publishing
1 публикация, 0.46%
10
20
30
40
50
60
70
80
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
220
Поделиться
Цитировать
ГОСТ |
Цитировать
Wang Q. et al. Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution // Advanced Energy Materials. 2019. Vol. 9. No. 36. p. 1901785.
ГОСТ со всеми авторами (до 50) Скопировать
Wang Q., Mariyappan S., Vergnet J., Abakumov A. M., Rousse G., Rabuel F., Chakir M., Tarascon J. Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution // Advanced Energy Materials. 2019. Vol. 9. No. 36. p. 1901785.
RIS |
Цитировать
TY - JOUR
DO - 10.1002/aenm.201901785
UR - https://doi.org/10.1002/aenm.201901785
TI - Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution
T2 - Advanced Energy Materials
AU - Wang, Qing
AU - Mariyappan, Sathiya
AU - Vergnet, Jean
AU - Abakumov, Artem M.
AU - Rousse, Gwenaelle
AU - Rabuel, Francois
AU - Chakir, M.
AU - Tarascon, Jean-Marie
PY - 2019
DA - 2019/08/09
PB - Wiley
SP - 1901785
IS - 36
VL - 9
SN - 1614-6832
SN - 1614-6840
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Wang,
author = {Qing Wang and Sathiya Mariyappan and Jean Vergnet and Artem M. Abakumov and Gwenaelle Rousse and Francois Rabuel and M. Chakir and Jean-Marie Tarascon},
title = {Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution},
journal = {Advanced Energy Materials},
year = {2019},
volume = {9},
publisher = {Wiley},
month = {aug},
url = {https://doi.org/10.1002/aenm.201901785},
number = {36},
pages = {1901785},
doi = {10.1002/aenm.201901785}
}
MLA
Цитировать
Wang, Qing, et al. “Reaching the Energy Density Limit of Layered O3‐NaNi 0.5 Mn 0.5 O 2 Electrodes via Dual Cu and Ti Substitution.” Advanced Energy Materials, vol. 9, no. 36, Aug. 2019, p. 1901785. https://doi.org/10.1002/aenm.201901785.