Superlattices and Microstructures, volume 15, issue 1, pages 15

MBE and MOCVD growth and properties of self-assembling quantum dot arrays in III-V semiconductor structures

Publication typeJournal Article
Publication date1994-01-01
wos Q2
SJR
CiteScore
Impact factor3.3
ISSN07496036, 10963677
Condensed Matter Physics
General Materials Science
Electrical and Electronic Engineering
Abstract
Abstract In this paper, we review our latest developments on the growth and properties of self-assembling quantum dot structures. The self-assembling growth technique which was initially developed using molecular beam epitaxy (MBE), has now been extended to metalorganic chemical vapor deposition (MOCVD). The paper first presents structural results based on atomic force and transmission electron microscopy studies of the quantum dot arrays which were obtained by MBE and MOCVD growth. From the detailed structural analysis we have observed that the formation of coherently strained dots of InAs, InAlAs, and InP dots on various cladding layer surfaces. MBE growth of InAs self-assembled dots has achieved the smallest size distribution, with dots as small as 12nm in diameter. For the MOCVD growth of InP dots we have found that the surface morphology and growth temperature of lower cladding layer growth has a profound influence on island size and density. Recent results on the optical and transport properties of the MBE grown self-assembling dot (SAD) arrays are also presented.
Found 

Top-30

Journals

5
10
15
20
25
30
5
10
15
20
25
30

Publishers

10
20
30
40
50
60
70
80
10
20
30
40
50
60
70
80
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?