Open Access
Open access
страницы 492-511

Learning Enriched Features for Real Image Restoration and Enhancement

Syed Waqas Zamir 1
ADITYA ARORA 1
Salman Khan 1, 2
Munawar Hayat 1, 2
Fahad Shahbaz Khan 1, 2
Ming-Hsuan Yang 3, 4
Ling Shao 1, 2
Тип публикацииBook Chapter
Дата публикации2020-11-20
scimago Q2
SJR0.352
CiteScore2.4
Impact factor
ISSN03029743, 16113349, 18612075, 18612083
Краткое описание
With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography and medical imaging. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present an architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet .
Найдено 
Найдено 

Топ-30

Журналы

10
20
30
40
50
Lecture Notes in Computer Science
50 публикаций, 7.53%
IEEE Transactions on Image Processing
29 публикаций, 4.37%
IEEE Transactions on Multimedia
26 публикаций, 3.92%
IEEE Access
21 публикация, 3.16%
IEEE Transactions on Circuits and Systems for Video Technology
21 публикация, 3.16%
Signal, Image and Video Processing
15 публикаций, 2.26%
IEEE Signal Processing Letters
15 публикаций, 2.26%
IEEE Transactions on Geoscience and Remote Sensing
13 публикаций, 1.96%
Digital Signal Processing: A Review Journal
12 публикаций, 1.81%
Neurocomputing
10 публикаций, 1.51%
IEEE Transactions on Pattern Analysis and Machine Intelligence
10 публикаций, 1.51%
Sensors
10 публикаций, 1.51%
IEEE Transactions on Instrumentation and Measurement
9 публикаций, 1.36%
Pattern Recognition
9 публикаций, 1.36%
Remote Sensing
8 публикаций, 1.2%
Applied Sciences (Switzerland)
8 публикаций, 1.2%
Computer Vision and Image Understanding
7 публикаций, 1.05%
Lecture Notes in Networks and Systems
7 публикаций, 1.05%
IET Image Processing
6 публикаций, 0.9%
Applied Intelligence
6 публикаций, 0.9%
Communications in Computer and Information Science
6 публикаций, 0.9%
Scientific Reports
6 публикаций, 0.9%
IEEE Transactions on Neural Networks and Learning Systems
6 публикаций, 0.9%
Visual Computer
5 публикаций, 0.75%
Multimedia Tools and Applications
5 публикаций, 0.75%
Knowledge-Based Systems
5 публикаций, 0.75%
Multimedia Systems
5 публикаций, 0.75%
Engineering Applications of Artificial Intelligence
5 публикаций, 0.75%
Electronics (Switzerland)
4 публикации, 0.6%
10
20
30
40
50

Издатели

50
100
150
200
250
300
350
Institute of Electrical and Electronics Engineers (IEEE)
326 публикаций, 49.1%
Springer Nature
148 публикаций, 22.29%
Elsevier
84 публикации, 12.65%
MDPI
37 публикаций, 5.57%
Association for Computing Machinery (ACM)
15 публикаций, 2.26%
Institution of Engineering and Technology (IET)
9 публикаций, 1.36%
SPIE-Intl Soc Optical Eng
8 публикаций, 1.2%
Wiley
5 публикаций, 0.75%
Frontiers Media S.A.
3 публикации, 0.45%
Taylor & Francis
3 публикации, 0.45%
IOP Publishing
2 публикации, 0.3%
IGI Global
2 публикации, 0.3%
Optica Publishing Group
2 публикации, 0.3%
World Scientific
2 публикации, 0.3%
Shanghai Institute of Optics and Fine Mechanics
2 публикации, 0.3%
Tsinghua University Press
1 публикация, 0.15%
Japan Society of Applied Physics
1 публикация, 0.15%
Public Library of Science (PLoS)
1 публикация, 0.15%
Hindawi Limited
1 публикация, 0.15%
SAE International
1 публикация, 0.15%
Scientific Research Publishing
1 публикация, 0.15%
SAGE
1 публикация, 0.15%
Society of Exploration Geophysicists
1 публикация, 0.15%
Research Institute of Signal Processing, Japan
1 публикация, 0.15%
Science in China Press
1 публикация, 0.15%
Institute of Image Information and Television Engineers
1 публикация, 0.15%
King Saud University
1 публикация, 0.15%
50
100
150
200
250
300
350
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
664
Поделиться
Цитировать
ГОСТ |
Цитировать
Zamir S. W. et al. Learning Enriched Features for Real Image Restoration and Enhancement // Lecture Notes in Computer Science. 2020. pp. 492-511.
ГОСТ со всеми авторами (до 50) Скопировать
Zamir S. W., ARORA A., Khan S., Hayat M., Khan F. S., Yang M., Shao L. Learning Enriched Features for Real Image Restoration and Enhancement // Lecture Notes in Computer Science. 2020. pp. 492-511.
RIS |
Цитировать
TY - GENERIC
DO - 10.1007/978-3-030-58595-2_30
UR - https://doi.org/10.1007/978-3-030-58595-2_30
TI - Learning Enriched Features for Real Image Restoration and Enhancement
T2 - Lecture Notes in Computer Science
AU - Zamir, Syed Waqas
AU - ARORA, ADITYA
AU - Khan, Salman
AU - Hayat, Munawar
AU - Khan, Fahad Shahbaz
AU - Yang, Ming-Hsuan
AU - Shao, Ling
PY - 2020
DA - 2020/11/20
PB - Springer Nature
SP - 492-511
SN - 0302-9743
SN - 1611-3349
SN - 1861-2075
SN - 1861-2083
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@incollection{2020_Zamir,
author = {Syed Waqas Zamir and ADITYA ARORA and Salman Khan and Munawar Hayat and Fahad Shahbaz Khan and Ming-Hsuan Yang and Ling Shao},
title = {Learning Enriched Features for Real Image Restoration and Enhancement},
publisher = {Springer Nature},
year = {2020},
pages = {492--511},
month = {nov}
}