Journal of Computer-Aided Molecular Design, volume 9, issue 6, pages 500-512

Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions

Publication typeJournal Article
Publication date1995-12-01
scimago Q2
SJR0.609
CiteScore8.0
Impact factor3
ISSN0920654X, 15734951
PubMed ID:  8789192
Drug Discovery
Physical and Theoretical Chemistry
Computer Science Applications
Abstract
Water is known to play an important rôle in the recognition and stabilization of the interaction between a ligand and its site. This has important implications for drug design. Analyses of 19 high-resolution crystal structures of protein-ligand complexes reveal the multiple hydrogen-bonding feature of water molecules mediating protein-ligand interactions. Most of the water molecules (nearly 80%) involved in bridging the protein and the ligand can make three or more hydrogen bonds when distance and bond angles are used as criteria to define hydrogen-bonding interactions. Isotropic B-factors have been used to take into account the mobility of water molecules. The water molecules at binding sites bridge the protein and ligand, and interact with other water molecules to form a complex network of interconnecting hydrogen bonds. Some water molecules at the site do not directly bridge between the protein and the ligand, but may contribute indirectly to the stability of the complex by holding bridging water molecules in the right position through a network of hydrogen bonds. These water networks are probably crucial for the stability of the protein-ligand complex and are important for any site-directed drug design strategies.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
16
2
4
6
8
10
12
14
16

Publishers

5
10
15
20
25
30
35
5
10
15
20
25
30
35
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?