Population Ecology, volume 57, issue 3, pages 485-493

Exploring the drivers of wildlife population dynamics from insufficient data by Bayesian model averaging

Yutaka Osada 1
Takeo Kuriyama 1
Masahiko Asada 2
Hiroyuki Yokomizo 3
TADASHI MIYASHITA 1
Publication typeJournal Article
Publication date2015-06-18
scimago Q2
wos Q4
SJR0.580
CiteScore3.9
Impact factor1.1
ISSN14383896, 1438390X
Ecology, Evolution, Behavior and Systematics
Abstract
A long-standing interest in ecology and wildlife management is to find drivers of wildlife population dynamics because it is crucial for implementing the effective wildlife management. Recent studies have demonstrated the usefulness of state-space modeling for this purpose, but we often confront the lack of the necessary time-series data. This is particularly common in wildlife management because of limited funds or early stage of data collection. In this study, we proposed a Bayesian model averaging technique in a state-space modeling framework for identifying the drivers of wildlife population dynamics from limited data. To exemplify the utility of Bayesian model averaging for wildlife management, we illustrate here the population dynamics of wild boars Sus scrofa in Chiba prefecture, central Japan. Despite the fact that our data are limited in both temporal and spatial resolution, Bayesian model averaging revealed the potential influence of bamboo forests and abandoned agricultural fields on wild boar population dynamics, and largely enhanced model predictability compared to the full model. Although Bayesian model averaging is not commonly used in ecology and wildlife management, our case study demonstrated that it may help to find influential drivers of wildlife population dynamics and develop a better management plan even from limited time-series data.
Found 
Found 

Top-30

Journals

1
2
1
2

Publishers

1
2
3
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Metrics
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?