In the present paper, we introduce the subclasses
$$\sum _{b}^{*}\left( q,\phi \right) $$
∑
b
∗
q
,
ϕ
and
$$\sum _{b}^{*}\left( \alpha ,q,\phi \right) $$
∑
b
∗
α
,
q
,
ϕ
of meromorphic functions
$$f\left( z\right) $$
f
z
satisfying
$$1+\frac{1}{b}\left[ -\frac{qzD_{q}^{*}f(z)}{f(z)}-1\right] \prec \phi (z)$$
1
+
1
b
-
q
z
D
q
∗
f
(
z
)
f
(
z
)
-
1
≺
ϕ
(
z
)
and
$$1+\frac{1}{b}\left[ \frac{-\left( 1-\frac{\alpha }{q}\right) qzD_{q}^{*}f\left( z\right) +\alpha qzD_{q}^{*}\left[ zD_{q}^{*}f\left( z\right) \right] }{\left( 1-\frac{\alpha }{q}\right) f\left( z\right) -\alpha zD_{q}^{*}f\left( z\right) }-1\right] \prec \phi (z)\ (b\in \mathbb {C} ^{*}=\mathbb {C}\backslash \left\{ 0\right\} ,\ $$
1
+
1
b
-
1
-
α
q
q
z
D
q
∗
f
z
+
α
q
z
D
q
∗
z
D
q
∗
f
z
1
-
α
q
f
z
-
α
z
D
q
∗
f
z
-
1
≺
ϕ
(
z
)
(
b
∈
C
∗
=
C
\
0
,
$$\alpha \in \mathbb {C}\backslash (0,1],\ \operatorname {Re}(\alpha )\ge 0,\ 0<q<1)$$
α
∈
C
\
(
0
,
1
]
,
Re
(
α
)
≥
0
,
0
<
q
<
1
)
, respectively. Sharp bounds for the Fekete-Szegö functional
$$\left| a_{1}-\mu a_{0}^{2}\right| $$
a
1
-
μ
a
0
2
are obtained.