том 28 издание 1 номер публикации 6

Universality of Riemann solutions in porous media

Pablo Castañeda 1
Dan Marchesin 2
Frederico Furtado 3
1
 
Department of Mathematics, ITAM, Ciudad de México, Mexico
2
 
Instituto Nacional de Matemática Pura e Aplicada, IMPA, Rio de Janeiro, Brazil
Тип публикацииJournal Article
Дата публикации2021-12-02
scimago Q2
wos Q2
БС3
SJR0.414
CiteScore1.4
Impact factor0.8
ISSN00378615, 1405213X, 22964495
General Mathematics
Краткое описание
Universality, a desirable feature in any system. For decades, elusive measurements of three-phase flows have yielded countless permeability models that describe them. However, the equations governing the solution of water and gas co-injection has a robust structure. This universal structure stands for Riemann problems in green oil reservoirs. In the past we established a large class of three phase flow models including convex Corey permeability, Stone I and Brooks–Corey models. These models share the property that characteristic speeds become equal at a state somewhere in the interior of the saturation triangle. Here we construct a three-phase flow model with unequal characteristic speeds in the interior of the saturation triangle, equality occurring only at a point of the boundary of the saturation triangle. Yet the solution for this model still displays the same universal structure, which favors the two possible embedded two-phase flows of water-oil or gas-oil. We focus on showing this structure under the minimum conditions that a permeability model must meet. This finding is a guide to seeking a purely three-phase flow solution maximizing oil recovery.
Найдено 
Найдено 

Топ-30

Журналы

1
Journal of Petroleum Exploration and Production Technology
1 публикация, 50%
ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
1 публикация, 50%
1

Издатели

1
Springer Nature
1 публикация, 50%
Wiley
1 публикация, 50%
1
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
2
Поделиться
Цитировать
ГОСТ |
Цитировать
Castañeda P., Marchesin D., Furtado F. Universality of Riemann solutions in porous media // Boletin de la Sociedad Matematica Mexicana. 2021. Vol. 28. No. 1. 6
ГОСТ со всеми авторами (до 50) Скопировать
Castañeda P., Marchesin D., Furtado F. Universality of Riemann solutions in porous media // Boletin de la Sociedad Matematica Mexicana. 2021. Vol. 28. No. 1. 6
RIS |
Цитировать
TY - JOUR
DO - 10.1007/s40590-021-00398-0
UR - https://doi.org/10.1007/s40590-021-00398-0
TI - Universality of Riemann solutions in porous media
T2 - Boletin de la Sociedad Matematica Mexicana
AU - Castañeda, Pablo
AU - Marchesin, Dan
AU - Furtado, Frederico
PY - 2021
DA - 2021/12/02
PB - National Association of Directors of Nursing Administration in Long Term Care
IS - 1
VL - 28
SN - 0037-8615
SN - 1405-213X
SN - 2296-4495
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Castañeda,
author = {Pablo Castañeda and Dan Marchesin and Frederico Furtado},
title = {Universality of Riemann solutions in porous media},
journal = {Boletin de la Sociedad Matematica Mexicana},
year = {2021},
volume = {28},
publisher = {National Association of Directors of Nursing Administration in Long Term Care},
month = {dec},
url = {https://doi.org/10.1007/s40590-021-00398-0},
number = {1},
pages = {6},
doi = {10.1007/s40590-021-00398-0}
}