том 119 страницы 102157

Dengue models based on machine learning techniques: A systematic literature review

Тип публикацииJournal Article
Дата публикации2021-09-01
scimago Q1
wos Q1
БС1
SJR1.396
CiteScore12.2
Impact factor6.2
ISSN09333657, 18732860
Medicine (miscellaneous)
Artificial Intelligence
Краткое описание
Dengue modeling is a research topic that has increased in recent years. Early prediction and decision-making are key factors to control dengue. This Systematic Literature Review (SLR) analyzes three modeling approaches of dengue: diagnostic, epidemic, intervention. These approaches require models of prediction, prescription and optimization. This SLR establishes the state-of-the-art in dengue modeling, using machine learning, in the last years.Several databases were selected to search the articles. The selection was made based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Sixty-four articles were obtained and analyzed to describe their strengths and limitations. Finally, challenges and opportunities for research on machine-learning for dengue modeling were identified.Logistic regression was the most used modeling approach for the diagnosis of dengue (59.1%). The analysis of the epidemic approach showed that linear regression (17.4%) is the most used technique within the spatial analysis. Finally, the most used intervention modeling is General Linear Model with 70%.We conclude that cause-effect models may improve diagnosis and understanding of dengue. Models that manage uncertainty can also be helpful, because of low data-quality in healthcare. Finally, decentralization of data, using federated learning, may decrease computational costs and allow model building without compromising data security.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
Physics of Life Reviews
3 публикации, 5.77%
Diagnostics
2 публикации, 3.85%
International Journal of Environmental Research and Public Health
2 публикации, 3.85%
Heliyon
2 публикации, 3.85%
Journal of Vector Borne Diseases
2 публикации, 3.85%
Applied Sciences (Switzerland)
1 публикация, 1.92%
Tropical Medicine and Infectious Disease
1 публикация, 1.92%
Remote Sensing
1 публикация, 1.92%
Health Care Management Science
1 публикация, 1.92%
Computational and Applied Mathematics
1 публикация, 1.92%
Engineering Applications of Artificial Intelligence
1 публикация, 1.92%
Security and Communication Networks
1 публикация, 1.92%
Expert Systems with Applications
1 публикация, 1.92%
PLOS Global Public Health
1 публикация, 1.92%
Computer Methods and Programs in Biomedicine
1 публикация, 1.92%
Communications in Computer and Information Science
1 публикация, 1.92%
Expert Review of Pharmacoeconomics and Outcomes Research
1 публикация, 1.92%
Health and Technology
1 публикация, 1.92%
Science in One Health
1 публикация, 1.92%
Healthcare Analytics
1 публикация, 1.92%
BMC Public Health
1 публикация, 1.92%
European Physical Journal B
1 публикация, 1.92%
Applied Ontology
1 публикация, 1.92%
Frontiers in Public Health
1 публикация, 1.92%
Infectious Disease Modelling
1 публикация, 1.92%
Journal of Epidemiology and Global Health
1 публикация, 1.92%
Journal of the Operational Research Society
1 публикация, 1.92%
Informatics
1 публикация, 1.92%
Infectious Diseases of Poverty
1 публикация, 1.92%
1
2
3

Издатели

2
4
6
8
10
12
Elsevier
12 публикаций, 23.08%
Springer Nature
10 публикаций, 19.23%
MDPI
8 публикаций, 15.38%
Institute of Electrical and Electronics Engineers (IEEE)
7 публикаций, 13.46%
Taylor & Francis
2 публикации, 3.85%
Wiley
2 публикации, 3.85%
Cold Spring Harbor Laboratory
2 публикации, 3.85%
SAGE
2 публикации, 3.85%
Medknow
2 публикации, 3.85%
Hindawi Limited
1 публикация, 1.92%
Public Library of Science (PLoS)
1 публикация, 1.92%
Frontiers Media S.A.
1 публикация, 1.92%
Russian Research Anti-Plague Institute Microbe
1 публикация, 1.92%
2
4
6
8
10
12
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
52
Поделиться
Цитировать
ГОСТ |
Цитировать
Hoyos W. et al. Dengue models based on machine learning techniques: A systematic literature review // Artificial Intelligence in Medicine. 2021. Vol. 119. p. 102157.
ГОСТ со всеми авторами (до 50) Скопировать
Hoyos W., Aguilar J. A., Toro M. Dengue models based on machine learning techniques: A systematic literature review // Artificial Intelligence in Medicine. 2021. Vol. 119. p. 102157.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.artmed.2021.102157
UR - https://doi.org/10.1016/j.artmed.2021.102157
TI - Dengue models based on machine learning techniques: A systematic literature review
T2 - Artificial Intelligence in Medicine
AU - Hoyos, William
AU - Aguilar, Jose A.
AU - Toro, Mauricio
PY - 2021
DA - 2021/09/01
PB - Elsevier
SP - 102157
VL - 119
PMID - 34531010
SN - 0933-3657
SN - 1873-2860
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2021_Hoyos,
author = {William Hoyos and Jose A. Aguilar and Mauricio Toro},
title = {Dengue models based on machine learning techniques: A systematic literature review},
journal = {Artificial Intelligence in Medicine},
year = {2021},
volume = {119},
publisher = {Elsevier},
month = {sep},
url = {https://doi.org/10.1016/j.artmed.2021.102157},
pages = {102157},
doi = {10.1016/j.artmed.2021.102157}
}