A hybrid non-linear time-varying double-weighted particle swarm optimization for solving non-convex combined environmental economic dispatch problem
Тип публикации: Journal Article
Дата публикации: 2020-01-01
scimago Q1
wos Q1
БС1
SJR: 1.511
CiteScore: 14.5
Impact factor: 6.6
ISSN: 15684946, 18729681
Software
Краткое описание
Fossil-fuel based power sources cause environmental pollution such as the degradation of air quality and climate change, which negatively impacts the life on the earth. Consequently, this demands that the power generation should consider the optimal management of thermal sources that are aimed at minimizing the emission of gasses in the generation mix. The production volume of multi-pollutant gasses (SO2, NOx, and CO2) can be reduced through a combined environmental economic dispatch (CEED) approach. This study has proposed a hybrid algorithm based on a novel combination of a modified genetic algorithm and an improved version of particle swarm optimization abbreviated as MGAIPSO to solve CEED problem. The study utilizes three robust operators to enhance the performance of the proposed hybrid algorithm. In GA, a uniformly weighted arithmetic crossover and a normally distributed mutation operator have been implemented to produce elite off-springs in each iteration and diversify the solutions in the search space. In the case of PSO, a non-linear time-varying double-weighted (NLTVDW) technique is developed to obtain a substantial balance between exploration and exploitation. To further enhance the exploitation ability of the MGAIPSO, this study has implemented two movements correctional methods to continuously monitor and amend the position and velocity of the particles. Several numerical case studies ranging from small to large-scale are carried out to validate the practicality of the proposed algorithm.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
|
|
|
Evolutionary Intelligence
3 публикации, 5.45%
|
|
|
Applied Soft Computing Journal
3 публикации, 5.45%
|
|
|
Energies
2 публикации, 3.64%
|
|
|
Frontiers in Energy Research
2 публикации, 3.64%
|
|
|
Sustainable Cities and Society
2 публикации, 3.64%
|
|
|
IET Generation, Transmission and Distribution
1 публикация, 1.82%
|
|
|
Environment, Development and Sustainability
1 публикация, 1.82%
|
|
|
Sustainability
1 публикация, 1.82%
|
|
|
Soft Computing
1 публикация, 1.82%
|
|
|
Journal of Electrical Engineering and Technology
1 публикация, 1.82%
|
|
|
Plant Methods
1 публикация, 1.82%
|
|
|
Applied Microbiology and Biotechnology
1 публикация, 1.82%
|
|
|
Electric Power Systems Research
1 публикация, 1.82%
|
|
|
Energy Systems
1 публикация, 1.82%
|
|
|
PLoS ONE
1 публикация, 1.82%
|
|
|
Processes
1 публикация, 1.82%
|
|
|
Ain Shams Engineering Journal
1 публикация, 1.82%
|
|
|
Sustainable Energy, Grids and Networks
1 публикация, 1.82%
|
|
|
Journal of the Franklin Institute
1 публикация, 1.82%
|
|
|
Energy Reports
1 публикация, 1.82%
|
|
|
IEEE Access
1 публикация, 1.82%
|
|
|
Mobile Information Systems
1 публикация, 1.82%
|
|
|
Artificial Intelligence in Data and Big Data Processing
1 публикация, 1.82%
|
|
|
Lecture Notes in Computer Science
1 публикация, 1.82%
|
|
|
Advances in Intelligent Systems and Computing
1 публикация, 1.82%
|
|
|
Electrical Engineering
1 публикация, 1.82%
|
|
|
Applied Intelligence
1 публикация, 1.82%
|
|
|
AEJ - Alexandria Engineering Journal
1 публикация, 1.82%
|
|
|
IEEJ Transactions on Electrical and Electronic Engineering
1 публикация, 1.82%
|
|
|
1
2
3
|
Издатели
|
2
4
6
8
10
12
14
16
|
|
|
Springer Nature
16 публикаций, 29.09%
|
|
|
Elsevier
15 публикаций, 27.27%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
7 публикаций, 12.73%
|
|
|
MDPI
6 публикаций, 10.91%
|
|
|
Frontiers Media S.A.
2 публикации, 3.64%
|
|
|
Institution of Engineering and Technology (IET)
1 публикация, 1.82%
|
|
|
Public Library of Science (PLoS)
1 публикация, 1.82%
|
|
|
Ain Shams University
1 публикация, 1.82%
|
|
|
Hindawi Limited
1 публикация, 1.82%
|
|
|
Wiley
1 публикация, 1.82%
|
|
|
American Institute of Mathematical Sciences (AIMS)
1 публикация, 1.82%
|
|
|
Taylor & Francis
1 публикация, 1.82%
|
|
|
2
4
6
8
10
12
14
16
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
55
Всего цитирований:
55
Цитирований c 2024:
14
(25.45%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Goudarzi A., Li Y., Ji Xiang J. A hybrid non-linear time-varying double-weighted particle swarm optimization for solving non-convex combined environmental economic dispatch problem // Applied Soft Computing Journal. 2020. Vol. 86. p. 105894.
ГОСТ со всеми авторами (до 50)
Скопировать
Goudarzi A., Li Y., Ji Xiang J. A hybrid non-linear time-varying double-weighted particle swarm optimization for solving non-convex combined environmental economic dispatch problem // Applied Soft Computing Journal. 2020. Vol. 86. p. 105894.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.asoc.2019.105894
UR - https://doi.org/10.1016/j.asoc.2019.105894
TI - A hybrid non-linear time-varying double-weighted particle swarm optimization for solving non-convex combined environmental economic dispatch problem
T2 - Applied Soft Computing Journal
AU - Goudarzi, Arman
AU - Li, Yanjun
AU - Ji Xiang, Ji
PY - 2020
DA - 2020/01/01
PB - Elsevier
SP - 105894
VL - 86
SN - 1568-4946
SN - 1872-9681
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2020_Goudarzi,
author = {Arman Goudarzi and Yanjun Li and Ji Ji Xiang},
title = {A hybrid non-linear time-varying double-weighted particle swarm optimization for solving non-convex combined environmental economic dispatch problem},
journal = {Applied Soft Computing Journal},
year = {2020},
volume = {86},
publisher = {Elsevier},
month = {jan},
url = {https://doi.org/10.1016/j.asoc.2019.105894},
pages = {105894},
doi = {10.1016/j.asoc.2019.105894}
}