Open Access
Elastic net multinomial logistic regression for fault diagnostics of on-board aeronautical systems
Тип публикации: Journal Article
Дата публикации: 2019-11-01
scimago Q1
wos Q1
БС1
SJR: 1.567
CiteScore: 10.3
Impact factor: 5.8
ISSN: 12709638, 16263219
Aerospace Engineering
Краткое описание
The objective of this work is the development of a fault diagnostic system for a shaker blower used in on-board aeronautical systems. Features extracted from condition monitoring signals and selected by the ELastic NET (ELNET) algorithm, which combines l 1 -penalty with the squared l 2 -penalty on model parameters, are used as inputs of a Multinomial Logistic regression (MLR) model. For validation, the developed approach is applied to experimental data acquired on a shaker blower system (as representative of aeronautical on-board systems) and on three additional experimental datasets of literature. The satisfactory diagnostic performances obtained show the potential of the method for developing sound diagnostic classifiers from a very large set of features, even when only few training data are available.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
|
|
|
Aerospace Science and Technology
3 публикации, 23.08%
|
|
|
AIP Conference Proceedings
2 публикации, 15.38%
|
|
|
Journal of Intelligent Manufacturing
1 публикация, 7.69%
|
|
|
Measurement: Journal of the International Measurement Confederation
1 публикация, 7.69%
|
|
|
IEEE Transactions on Emerging Topics in Computational Intelligence
1 публикация, 7.69%
|
|
|
IEEE Transactions on Industrial Electronics
1 публикация, 7.69%
|
|
|
Eng—Advances in Engineering
1 публикация, 7.69%
|
|
|
Mathematics
1 публикация, 7.69%
|
|
|
IEEE Transactions on Industrial Informatics
1 публикация, 7.69%
|
|
|
1
2
3
|
Издатели
|
1
2
3
4
|
|
|
Elsevier
4 публикации, 30.77%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 23.08%
|
|
|
AIP Publishing
2 публикации, 15.38%
|
|
|
MDPI
2 публикации, 15.38%
|
|
|
Springer Nature
1 публикация, 7.69%
|
|
|
Society of Petroleum Engineers
1 публикация, 7.69%
|
|
|
1
2
3
4
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
13
Всего цитирований:
13
Цитирований c 2024:
5
(38.46%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Cannarile F. et al. Elastic net multinomial logistic regression for fault diagnostics of on-board aeronautical systems // Aerospace Science and Technology. 2019. Vol. 94. p. 105392.
ГОСТ со всеми авторами (до 50)
Скопировать
Cannarile F., Compare M., Baraldi P., Diodati G., Quaranta V., Zio E. Elastic net multinomial logistic regression for fault diagnostics of on-board aeronautical systems // Aerospace Science and Technology. 2019. Vol. 94. p. 105392.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.ast.2019.105392
UR - https://doi.org/10.1016/j.ast.2019.105392
TI - Elastic net multinomial logistic regression for fault diagnostics of on-board aeronautical systems
T2 - Aerospace Science and Technology
AU - Cannarile, Francesco
AU - Compare, Michele
AU - Baraldi, P.
AU - Diodati, G
AU - Quaranta, V.
AU - Zio, E.
PY - 2019
DA - 2019/11/01
PB - Elsevier
SP - 105392
VL - 94
SN - 1270-9638
SN - 1626-3219
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2019_Cannarile,
author = {Francesco Cannarile and Michele Compare and P. Baraldi and G Diodati and V. Quaranta and E. Zio},
title = {Elastic net multinomial logistic regression for fault diagnostics of on-board aeronautical systems},
journal = {Aerospace Science and Technology},
year = {2019},
volume = {94},
publisher = {Elsevier},
month = {nov},
url = {https://doi.org/10.1016/j.ast.2019.105392},
pages = {105392},
doi = {10.1016/j.ast.2019.105392}
}
Профили