том 175 страницы 203-218

Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches

Binh V. Pham 1
Indra Prakash 2
Dou Jie 4
Tran Thi Thu Trang 5
Himan Shahabi 6
Тип публикацииJournal Article
Дата публикации2019-04-01
scimago Q1
wos Q1
БС1
SJR1.684
CiteScore11.1
Impact factor5.7
ISSN03418162, 18726887
Earth-Surface Processes
Краткое описание
Nowadays, a number of machine learning prediction methods are being applied in the field of landslide susceptibility modeling of the large area especially in the difficult hilly terrain. In the present study, hybrid machine learning approaches of Reduced Error Pruning Trees (REPT) and different ensemble techniques were used for the construction of four novel hybrid models namely Bagging based Reduced Error Pruning Trees (BREPT), MultiBoost based Reduced Error Pruning Trees (MBREPT), Rotation Forest-based Reduced Error Pruning Trees (RFREPT), Random Subspace-based Reduced Error Pruning Trees (RSREPT) for landslide susceptibility assessment and prediction. In total, ten topographical and geo-environmental landslide conditioning factors were considered for analyzing their spatial relationship with landslide occurrences. Receiver Operating Characteristic curve, Statistical Indexes, and Root Mean Square Error methods were used to validate performance of these models. Analysis of model results indicate that the BREPT is the best model for landslide susceptibility assessment in comparison to other models.
Найдено 
Найдено 

Топ-30

Журналы

2
4
6
8
10
12
14
Remote Sensing
14 публикаций, 5.13%
Catena
13 публикаций, 4.76%
Applied Sciences (Switzerland)
11 публикаций, 4.03%
Geocarto International
11 публикаций, 4.03%
Water (Switzerland)
7 публикаций, 2.56%
Environmental Science and Pollution Research
7 публикаций, 2.56%
Natural Hazards
7 публикаций, 2.56%
Sustainability
6 публикаций, 2.2%
Ecological Informatics
6 публикаций, 2.2%
Advances in Space Research
6 публикаций, 2.2%
ISPRS International Journal of Geo-Information
5 публикаций, 1.83%
Environmental Earth Sciences
5 публикаций, 1.83%
Stochastic Environmental Research and Risk Assessment
5 публикаций, 1.83%
Geoscience Frontiers
5 публикаций, 1.83%
Ecological Indicators
5 публикаций, 1.83%
Science of the Total Environment
5 публикаций, 1.83%
International Journal of Environmental Research and Public Health
4 публикации, 1.47%
Scientific Reports
4 публикации, 1.47%
Bulletin of Engineering Geology and the Environment
4 публикации, 1.47%
Earth Science Informatics
4 публикации, 1.47%
Landslides
4 публикации, 1.47%
Gondwana Research
4 публикации, 1.47%
Forests
3 публикации, 1.1%
Journal of Mountain Science
3 публикации, 1.1%
Arabian Journal of Geosciences
3 публикации, 1.1%
Journal of Hydrology
3 публикации, 1.1%
Journal of Environmental Management
3 публикации, 1.1%
Geomatics, Natural Hazards and Risk
3 публикации, 1.1%
International Journal of Applied Earth Observation and Geoinformation
2 публикации, 0.73%
2
4
6
8
10
12
14

Издатели

10
20
30
40
50
60
70
80
90
Elsevier
84 публикации, 30.77%
Springer Nature
78 публикаций, 28.57%
MDPI
59 публикаций, 21.61%
Taylor & Francis
18 публикаций, 6.59%
Institute of Electrical and Electronics Engineers (IEEE)
5 публикаций, 1.83%
Frontiers Media S.A.
4 публикации, 1.47%
SAGE
3 публикации, 1.1%
Tech Science Press
2 публикации, 0.73%
Walter de Gruyter
2 публикации, 0.73%
Hindawi Limited
2 публикации, 0.73%
IWA Publishing
2 публикации, 0.73%
Research Square Platform LLC
2 публикации, 0.73%
Oxford University Press
1 публикация, 0.37%
GeoScienceWorld
1 публикация, 0.37%
Scientific Research Publishing
1 публикация, 0.37%
IntechOpen
1 публикация, 0.37%
American Society of Civil Engineers (ASCE)
1 публикация, 0.37%
Wiley
1 публикация, 0.37%
10
20
30
40
50
60
70
80
90
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
273
Поделиться
Цитировать
ГОСТ |
Цитировать
Pham B. V. et al. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches // Catena. 2019. Vol. 175. pp. 203-218.
ГОСТ со всеми авторами (до 50) Скопировать
Pham B. V., Prakash I., Singh S., Jie D., Trang T. T. T., Shahabi H. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches // Catena. 2019. Vol. 175. pp. 203-218.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.catena.2018.12.018
UR - https://doi.org/10.1016/j.catena.2018.12.018
TI - Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches
T2 - Catena
AU - Pham, Binh V.
AU - Prakash, Indra
AU - Singh, Sushant
AU - Jie, Dou
AU - Trang, Tran Thi Thu
AU - Shahabi, Himan
PY - 2019
DA - 2019/04/01
PB - Elsevier
SP - 203-218
VL - 175
SN - 0341-8162
SN - 1872-6887
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2019_Pham,
author = {Binh V. Pham and Indra Prakash and Sushant Singh and Dou Jie and Tran Thi Thu Trang and Himan Shahabi},
title = {Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches},
journal = {Catena},
year = {2019},
volume = {175},
publisher = {Elsevier},
month = {apr},
url = {https://doi.org/10.1016/j.catena.2018.12.018},
pages = {203--218},
doi = {10.1016/j.catena.2018.12.018}
}