Open Access
Journal of Materials Research and Technology, volume 17, pages 3013-3032
Structure and properties of composite coatings of the SnO2–In2O3–Ag–N system intended for strengthening the copper contacts of powerful electric network switches
Romanov D.A., Pochetukha V.V., Sosnin K.V., Moskovskii S.V., Gromov V.E., Bataev V.A., Ivanov Y.F., Semin A.P.
Publication type: Journal Article
Publication date: 2022-03-01
scimago Q1
SJR: 1.091
CiteScore: 8.8
Impact factor: 6.2
ISSN: 22387854, 22140697
Metals and Alloys
Surfaces, Coatings and Films
Ceramics and Composites
Biomaterials
Abstract
The goal of the research is to analyze the structure and properties of the coating SnO 2 –In 2 O 2 –Ag–N formed on copper by a complex method. The method of coating formation combined the electroerosion spraying, irradiation by pulsed electron beam and subsequent nitriding in plasma of a gas discharge of a low pressure. It is shown that the thickness of the coating amounts to ≈100 μm. The wear resistance of a copper sample with the deposited coating is ≈ 2.8 times higher than that of copper without the coating. The friction coefficient of samples with the coating (μ = 0.479) is ≈ 1.4 times less than that of copper without the coating (μ = 0.679). It is established that the coating hardness increases as the substrate is approached and reaches its maximum value of ≈1400 MPa (substrate hardness is 1270 MPa). By means of micro-X-ray- spectral analysis it is detected that the main chemical element of the coating is silver, with copper, tin, indium, oxygen and nitrogen being present in a much smaller quantity. By the methods of X-ray phase analysis it is revealed that the main phases of the coating are copper-and silver base solid solutions. Tests for the electroerosion resistance showed that the coatings meet the requirements of standards for electromagnet starters with the category of application AC-3 of direct action.
Nothing found, try to update filter.
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.
Profiles