Mitochondrion, volume 82, pages 102022

Mitochondria in aging and age-associated diseases

Sonu Pahal
Nirjal Mainali
Meenakshisundaram Balasubramaniam
Robert J. Shmookler Reis
Srinivas Ayyadevara
Publication typeJournal Article
Publication date2025-05-01
Journal: Mitochondrion
scimago Q2
SJR1.209
CiteScore9.4
Impact factor3.9
ISSN15677249, 18728278
Zong Y., Li H., Liao P., Chen L., Pan Y., Zheng Y., Zhang C., Liu D., Zheng M., Gao J.
2024-05-15 citations by CoLab: 181 PDF Abstract  
AbstractMitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Cho S.Y., Kim E.W., Park S.J., Phillips B.U., Jeong J., Kim H., Heath C.J., Kim D., Jang Y., López-Cruz L., Saksida L.M., Bussey T.J., Lee D.Y., Kim E.
Translational Psychiatry scimago Q1 wos Q1 Open Access
2024-01-18 citations by CoLab: 17 PDF Abstract  
AbstractMetformin, a primary anti-diabetic medication, has been anticipated to provide benefits for Alzheimer’s disease (AD), also known as “type 3 diabetes”. Nevertheless, some studies have demonstrated that metformin may trigger AD pathology and even elevate AD risk in humans. Despite this, limited research has elucidated the behavioral outcomes of metformin treatment, which would hold significant translational value. Thus, we aimed to perform thorough behavioral research on the prolonged administration of metformin to mice: We administered metformin (300 mg/kg/day) to transgenic 3xTg-AD and non-transgenic (NT) C57BL/6 mice over 1 and 2 years, respectively, and evaluated their behaviors across multiple domains via touchscreen operant chambers, including motivation, attention, memory, visual discrimination, and cognitive flexibility. We found metformin enhanced attention, inhibitory control, and associative learning in younger NT mice (≤16 months). However, chronic treatment led to impairments in memory retention and discrimination learning at older age. Furthermore, metformin caused learning and memory impairment and increased levels of AMPKα1-subunit, β-amyloid oligomers, plaques, phosphorylated tau, and GSK3β expression in AD mice. No changes in potential confounding factors on cognition, including levels of motivation, locomotion, appetite, body weight, blood glucose, and serum vitamin B12, were observed in metformin-treated AD mice. We also identified an enhanced amyloidogenic pathway in db/db mice, as well as in Neuro2a-APP695 cells and a decrease in synaptic markers, such as PSD-95 and synaptophysin in primary neurons, upon metformin treatment. Our findings collectively suggest that the repurposing of metformin should be carefully reconsidered when this drug is used for individuals with AD.
Balasubramaniam M., Ganne A., Mainali N., Pahal S., Ayyadevara S., Shmookler Reis R.J.
iScience scimago Q1 wos Q1 Open Access
2024-01-01 citations by CoLab: 2 Abstract  
Alzheimer's disease (AD) is characterized by peri-neuronal amyloid plaque and intra-neuronal neurofibrillary tangles. These aggregates are identified by the immunodetection of "seed" proteins (Aβ1-42 and hyperphosphorylated tau, respectively), but include many other proteins incorporated nonrandomly. Using click-chemistry intra-aggregate crosslinking, we previously modeled amyloid "contactomes" in SY5Y-APPSw neuroblastoma cells, revealing that aspirin impedes aggregate growth and complexity. By an analogous strategy, we now construct amyloid-specific aggregate interactomes of AD and age-matched-control hippocampi. Comparing these interactomes reveals AD-specific interactions, from which neural-network (NN) analyses predict proteins with the highest impact on pathogenic aggregate formation and/or stability. RNAi knockdowns of implicated proteins, in C. elegans and human-cell-culture models of AD, validated those predictions. Gene-Ontology meta-analysis of AD-enriched influential proteins highlighted the involvement of mitochondrial and cytoplasmic compartments in AD-specific aggregation. This approach derives dynamic consensus models of aggregate growth and architecture, implicating highly influential proteins as new targets to disrupt amyloid accrual in the AD brain.
Hu M., Shu H.
2023-11-07 citations by CoLab: 47 Abstract  
AbstractVarious cellular stress conditions trigger mitochondrial DNA (mtDNA) release from mitochondria into the cytosol. The released mtDNA is sensed by the cGAS-MITA/STING pathway, resulting in the induced expression of type I interferon and other effector genes. These processes contribute to the innate immune response to viral infection and other stress factors. The deregulation of these processes causes autoimmune diseases, inflammatory metabolic disorders and cancer. Therefore, the cGAS-MITA/STING pathway is a potential target for intervention in infectious, inflammatory and autoimmune diseases as well as cancer. In this review, we focus on the mechanisms underlying the mtDNA-triggered activation of the cGAS-MITA/STING pathway, the effects of the pathway under various physiological and pathological conditions, and advances in the development of drugs that target cGAS and MITA/STING.
Janer A., Morris J.L., Krols M., Antonicka H., Aaltonen M.J., Lin Z., Anand H., Gingras A., Prudent J., Shoubridge E.A.
Life Science Alliance scimago Q1 wos Q1 Open Access
2023-11-06 citations by CoLab: 10 Abstract  
Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria–ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1–SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria–ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.
Gravandi M.M., Abdian S., Tahvilian M., Iranpanah A., Moradi S.Z., Fakhri S., Echeverría J.
Phytomedicine scimago Q1 wos Q1
2023-07-01 citations by CoLab: 20 Abstract  
Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Chen Y., Wu L., Liu J., Ma L., Zhang W.
FASEB Journal scimago Q1 wos Q2
2023-05-24 citations by CoLab: 18 Abstract  
AbstractAdenine nucleotide translocases (ANTs) are central to mitochondrial integrity and bioenergetic metabolism. This review aims to integrate the progresses and knowledge on ANTs over the last few years, contributing to a potential implication of ANTs for various diseases. Structures, functions, modifications, regulators and pathological implications of ANTs for human diseases are intensively demonstrated here. ANTs have four isoforms (ANT1‐4), responsible for exchanging ATP/ADP, possibly composing of pro‐apoptotic mPTP as a major component, and mediating FA‐dependent uncoupling of proton efflux. ANT can be modified by methylation, nitrosylation and nitroalkylation, acetylation, glutathionylation, phosphorylation, carbonylation and hydroxynonenal‐induced modifications. Compounds, including bongkrekic acid, atractyloside calcium, carbon monoxide, minocycline, 4‐(N‐(S‐penicillaminylacetyl)amino) phenylarsonous acid, cardiolipin, free long‐chain fatty acids, agaric acid, long chain acyl‐coenzyme A esters, all have an ability to regulate ANT activities. ANT impairment leads to bioenergetic failure and mitochondrial dysfunction, contributing to pathogenesis of diseases, such as diabetes (deficiency), heart disease (deficiency), Parkinson's disease (reduction), Sengers Syndrome (decrease), cancer (isoform shifting), Alzheimer's Disease (coaggregation with Tau), Progressive External Opthalmoplegia (mutation), and Fascioscapulohumeral muscular dystrophy (overexpression). This review improves the understanding of the mechanism of ANT in pathogenesis of human diseases, and opens a window for novel therapeutic strategies targeted on ANT in diseases.
Sbai O., Bazzani V., Tapaswi S., McHale J., Vascotto C., Perrone L.
2023-05-12 citations by CoLab: 10 PDF Abstract  
Recent advances highlight that inflammation is critical to Alzheimer Disease (AD) pathogenesis. Indeed, several diseases characterized by inflammation are considered risk factors for AD, such as type 2 diabetes, obesity, hypertension, and traumatic brain injury. Moreover, allelic variations in genes involved in the inflammatory cascade are risk factors for AD. AD is also characterized by mitochondrial dysfunction, which affects the energy homeostasis of the brain. The role of mitochondrial dysfunction has been characterized mostly in neuronal cells. However, recent data are demonstrating that mitochondrial dysfunction occurs also in inflammatory cells, promoting inflammation and the secretion of pro-inflammatory cytokines, which in turn induce neurodegeneration. In this review, we summarize the recent finding supporting the hypothesis of the inflammatory-amyloid cascade in AD. Moreover, we describe the recent data that demonstrate the link between altered mitochondrial dysfunction and the inflammatory cascade. We focus in summarizing the role of Drp1, which is involved in mitochondrial fission, showing that altered Drp1 activation affects the mitochondrial homeostasis and leads to the activation of the NLRP3 inflammasome, promoting the inflammatory cascade, which in turn aggravates Amyloid beta (Ab) deposition and tau-induced neurodegeneration, showing the relevance of this pro-inflammatory pathway as an early event in AD.
Di Mambro T., Pellielo G., Agyapong E.D., Carinci M., Chianese D., Giorgi C., Morciano G., Patergnani S., Pinton P., Rimessi A.
2023-05-03 citations by CoLab: 24 PDF Abstract  
Mitochondria are organelles present in almost all eukaryotic cells, where they represent the main site of energy production. Mitochondria are involved in several important cell processes, such as calcium homeostasis, OXPHOS, autophagy, and apoptosis. Moreover, they play a pivotal role also in inflammation through the inter-organelle and inter-cellular communications, mediated by the release of mitochondrial damage-associated molecular patterns (mtDAMPs). It is currently well-documented that in addition to traditional endocrine and paracrine communication, the cells converse via extracellular vesicles (EVs). These small membrane-bound particles are released from cells in the extracellular milieu under physio-pathological conditions. Importantly, EVs have gained much attention for their crucial role in inter-cellular communication, translating inflammatory signals into recipient cells. EVs cargo includes plasma membrane and endosomal proteins, but EVs also contain material from other cellular compartments, including mitochondria. Studies have shown that EVs may transport mitochondrial portions, proteins, and/or mtDAMPs to modulate the metabolic and inflammatory responses of recipient cells. Overall, the relationship between EVs and mitochondria in inflammation is an active area of research, although further studies are needed to fully understand the mechanisms involved and how they may be targeted for therapeutic purposes. Here, we have reported and discussed the latest studies focused on this fascinating and recent area of research, discussing of tricky connection between mitochondria and EVs in inflammatory-related diseases.
Sanz-Ros J., Mas-Bargues C., Romero-García N., Huete-Acevedo J., Dromant M., Borrás C.
2023-04-10 citations by CoLab: 15 PDF Abstract  
The mitochondria play a crucial role in cellular metabolism, reactive oxygen species (ROS) production, and apoptosis. Aberrant mitochondria can cause severe damage to the cells, which have established a tight quality control for the mitochondria. This process avoids the accumulation of damaged mitochondria and can lead to the release of mitochondrial constituents to the extracellular milieu through mitochondrial extracellular vesicles (MitoEVs). These MitoEVs carry mtDNA, rRNA, tRNA, and protein complexes of the respiratory chain, and the largest MitoEVs can even transport whole mitochondria. Macrophages ultimately engulf these MitoEVs to undergo outsourced mitophagy. Recently, it has been reported that MitoEVs can also contain healthy mitochondria, whose function seems to be the rescue of stressed cells by restoring the loss of mitochondrial function. This mitochondrial transfer has opened the field of their use as potential disease biomarkers and therapeutic tools. This review describes this new EVs-mediated transfer of the mitochondria and the current application of MitoEVs in the clinical environment.
Rivera J., Gangwani L., Kumar S.
Cells scimago Q1 wos Q2 Open Access
2023-02-25 citations by CoLab: 17 PDF Abstract  
Mitochondria play several vital roles in the brain cells, especially in neurons to provide synaptic energy (ATP), Ca2+ homeostasis, Reactive Oxygen Species (ROS) production, apoptosis, mitophagy, axonal transport and neurotransmission. Mitochondrial dysfunction is a well-established phenomenon in the pathophysiology of many neurological diseases, including Alzheimer’s disease (AD). Amyloid-beta (Aβ) and Phosphorylated tau (p-tau) proteins cause the severe mitochondrial defects in AD. A newly discovered cellular niche of microRNAs (miRNAs), so-called mitochondrial-miRNAs (mito-miRs), has recently been explored in mitochondrial functions, cellular processes and in a few human diseases. The mitochondria localized miRNAs regulate local mitochondrial genes expression and are significantly involved in the modulation of mitochondrial proteins, and thereby in controlling mitochondrial function. Thus, mitochondrial miRNAs are crucial to maintaining mitochondrial integrity and for normal mitochondrial homeostasis. Mitochondrial dysfunction is well established in AD pathogenesis, but unfortunately mitochondria miRNAs and their precise roles have not yet been investigated in AD. Therefore, an urgent need exists to examine and decipher the critical roles of mitochondrial miRNAs in AD and in the aging process. The current perspective sheds light on the latest insights and future research directions on investigating the contribution of mitochondrial miRNAs in AD and aging.
Wilson D.M., Cookson M.R., Van Den Bosch L., Zetterberg H., Holtzman D.M., Dewachter I.
Cell scimago Q1 wos Q1
2023-02-16 citations by CoLab: 707 Abstract  
Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs.
Fields M., Marcuzzi A., Gonelli A., Celeghini C., Maximova N., Rimondi E.
2023-02-13 citations by CoLab: 38 PDF Abstract  
Neurodegenerative diseases comprise a wide spectrum of pathologies characterized by progressive loss of neuronal functions and structures. Despite having different genetic backgrounds and etiology, in recent years, many studies have highlighted a point of convergence in the mechanisms leading to neurodegeneration: mitochondrial dysfunction and oxidative stress have been observed in different pathologies, and their detrimental effects on neurons contribute to the exacerbation of the pathological phenotype at various degrees. In this context, increasing relevance has been acquired by antioxidant therapies, with the purpose of restoring mitochondrial functions in order to revert the neuronal damage. However, conventional antioxidants were not able to specifically accumulate in diseased mitochondria, often eliciting harmful effects on the whole body. In the last decades, novel, precise, mitochondria-targeted antioxidant (MTA) compounds have been developed and studied, both in vitro and in vivo, to address the need to counter the oxidative stress in mitochondria and restore the energy supply and membrane potentials in neurons. In this review, we focus on the activity and therapeutic perspectives of MitoQ, SkQ1, MitoVitE and MitoTEMPO, the most studied compounds belonging to the class of MTA conjugated to lipophilic cations, in order to reach the mitochondrial compartment.
Manni G., Buratta S., Pallotta M.T., Chiasserini D., Di Michele A., Emiliani C., Giovagnoli S., Pascucci L., Romani R., Bellezza I., Urbanelli L., Fallarino F.
Cells scimago Q1 wos Q2 Open Access
2023-02-06 citations by CoLab: 24 PDF Abstract  
Extracellular vesicles (EVs) are membrane-enclosed particles secreted by cells and circulating in body fluids. Initially considered as a tool to dispose of unnecessary material, they are now considered an additional method to transmit cell signals. Aging is characterized by a progressive impairment of the physiological functions of tissues and organs. The causes of aging are complex and interconnected, but there is consensus that genomic instability, telomere erosion, epigenetic alteration, and defective proteostasis are primary hallmarks of the aging process. Recent studies have provided evidence that many of these primary stresses are associated with an increased release of EVs in cell models, able to spread senescence signals in the recipient cell. Additional investigations on the role of EVs during aging also demonstrated the great potential of EVs for the modulation of age-related phenotypes and for pro-rejuvenation therapies, potentially beneficial for many diseases associated with aging. Here we reviewed the current literature on EV secretion in senescent cell models and in old vs. young individual body fluids, as well as recent studies addressing the potential of EVs from different sources as an anti-aging tool. Although this is a recent field, the robust consensus on the altered EV release in aging suggests that altered EV secretion could be considered an emerging hallmark of aging.
Cong W., Meng L., Pan Y., Wang H., Zhu J., Huang Y., Huang Q.
Nano Today scimago Q1 wos Q1
2023-02-01 citations by CoLab: 13 Abstract  
Population aging is an increasingly aggravated public issue worldwide. Nanomaterials with enzyme-like activities are recognized as potentially important nanomedicines, yet how to leverage their in vivo performance for anti-aging therapy is still challenging. Here inspired by vital roles of mitochondrial respiratory chain complex enzymes on bioenergy generation and longevity, we reported a Pd based single-atom nanozyme ([email protected]/GO) as cascade nanoreactors to improve mitochondrial activities for aging attenuation. By mimicking NADH oxidase (NOX) and Cytochrome c oxidase (CcO), the nanozyme can catalyze the cascade reactions on mitochondrial respiratory chain and produce NAD+ without any external stimuli. At both Caenorhabditis elegans (C. elegans) and cell levels, we verified that nanozyme treatment could boost the mitochondrial function and abundance. More importantly, the nanozyme showed excellent anti-aging and neuroprotective effect. Mechanically, the activated mitochondrial unfolded protein response (UPRmt) pathway plays a vital role in its anti-aging effect. Together, this work paves a way for nanocatalytic anti-aging therapy by rationally designing a simple and powerful nanozymes with dual-enzymatic activities.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?