Polymer Degradation and Stability, volume 172, pages 109076

Biomimetic scaffold fabricated with a mammalian trabecular bone template

Publication typeJournal Article
Publication date2020-02-01
scimago Q1
wos Q1
SJR1.089
CiteScore10.1
Impact factor6.3
ISSN01413910, 18732321
Materials Chemistry
Condensed Matter Physics
Polymers and Plastics
Mechanics of Materials
Abstract
This study proposes the method of ultra-high molecular weight polyethylene (UHMWPE) biomimetic scaffold fabrication. Anisotropy is considered to be a distinctive feature of native bone but basically only a 3D-fabricated scaffold structure may be anisotropic, while 3D-printing is not applicable to UHMWPE. We proposed a novel method that suggested a template of native mammalian bone to be used as a negative for UHMWPE scaffold fabrication. This method allows direct replication of the bone's structural features on the micro- and macro-scale. Bone scaffolds obtained using the specified method showed anisotropic structure; the pores' average proportions for scaffold and bone were 770 and 470, and 700 and 500 μm, respectively. According to SEM and CT investigations, the scaffolds' macro- and microstructure mimicked the native bone architecture; this feature distinguishes the proposed method from the other UHMWPE scaffold fabrication techniques. The combination of the hydrophilic surface and the nanorelief affected the adhesion and proliferation of cells: the adhesion of multipotent mesenchymal stromal cells (MMSC) amounted to 40% after 4 h; the proliferation of MMSC was 75% after 48 h. The proposed novel method of fabricating biomimetic scaffolds can be used to obtain bone implants of the complex microstructure and anisotropy from high-melt viscosity polymers which cannot be 3D-printed to be further applied in bone reconstruction. The FT-IR analysis confirmed the occurrence of carboxyl oxidation when the surface of UHMWPE sample was treated with chromic acid. The oxidation index (OI) of the samples was found in the order of etching in chromic acid > sterilization > hot moulding respectively. It can be suggested that the oxidative degradation of UHMWPE can be reduced by optimizing manufacturing conditions and further selection of an appropriate processing method.

Top-30

Journals

1
1

Publishers

1
2
3
1
2
3
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex
Found error?