jMetalPy: A Python framework for multi-objective optimization with metaheuristics
Antonio Benítez-Hidalgo
1
,
Antonio Fernández Nebro
1
,
Jose Garcia Nieto
1
,
I. Oregi
2
,
Javier Del Ser
3, 4
Тип публикации: Journal Article
Дата публикации: 2019-12-01
scimago Q1
wos Q1
БС1
SJR: 1.890
CiteScore: 15.0
Impact factor: 8.5
ISSN: 22106502, 22106510
General Mathematics
General Computer Science
Краткое описание
This paper describes jMetalPy, an object-oriented Python-based framework for multi-objective optimization with metaheuristic techniques. Building upon our experiences with the well-known jMetal framework, we have developed a new multi-objective optimization software platform aiming not only at replicating the former one in a different programming language, but also at taking advantage of the full feature set of Python, including its facilities for fast prototyping and the large amount of available libraries for data processing, data analysis, data visualization, and high-performance computing. As a result, jMetalPy provides an environment for solving multi-objective optimization problems focused not only on traditional metaheuristics, but also on techniques supporting preference articulation, constrained and dynamic problems, along with a rich set of features related to the automatic generation of statistical data from the results generated, as well as the real-time and interactive visualization of the Pareto front approximations produced by the algorithms. jMetalPy offers additionally support for parallel computing in multicore and cluster systems. We include some use cases to explore the main features of jMetalPy and to illustrate how to work with it.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
2
4
6
8
10
12
14
16
|
|
|
Lecture Notes in Computer Science
15 публикаций, 7.73%
|
|
|
Applied Sciences (Switzerland)
6 публикаций, 3.09%
|
|
|
Applied Soft Computing Journal
5 публикаций, 2.58%
|
|
|
Energies
4 публикации, 2.06%
|
|
|
IEEE Access
4 публикации, 2.06%
|
|
|
Mathematics
3 публикации, 1.55%
|
|
|
Swarm and Evolutionary Computation
3 публикации, 1.55%
|
|
|
Energy
3 публикации, 1.55%
|
|
|
IEEE Transactions on Software Engineering
3 публикации, 1.55%
|
|
|
Communications in Computer and Information Science
3 публикации, 1.55%
|
|
|
Engineering Applications of Artificial Intelligence
3 публикации, 1.55%
|
|
|
International Transactions in Operational Research
2 публикации, 1.03%
|
|
|
Soft Computing
2 публикации, 1.03%
|
|
|
Future Generation Computer Systems
2 публикации, 1.03%
|
|
|
Information Fusion
2 публикации, 1.03%
|
|
|
ACM Transactions on Evolutionary Learning and Optimization
2 публикации, 1.03%
|
|
|
Lecture Notes in Networks and Systems
2 публикации, 1.03%
|
|
|
Biomimetics
2 публикации, 1.03%
|
|
|
Information Sciences
2 публикации, 1.03%
|
|
|
AIAA Journal
1 публикация, 0.52%
|
|
|
Journal of Thermal Science and Engineering Applications
1 публикация, 0.52%
|
|
|
Journal of Neutron Research
1 публикация, 0.52%
|
|
|
Evolutionary Computation
1 публикация, 0.52%
|
|
|
Sensors
1 публикация, 0.52%
|
|
|
Sustainability
1 публикация, 0.52%
|
|
|
Drones
1 публикация, 0.52%
|
|
|
Metabolites
1 публикация, 0.52%
|
|
|
Journal of Global Optimization
1 публикация, 0.52%
|
|
|
Nature Methods
1 публикация, 0.52%
|
|
|
2
4
6
8
10
12
14
16
|
Издатели
|
10
20
30
40
50
60
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
51 публикация, 26.29%
|
|
|
Elsevier
41 публикация, 21.13%
|
|
|
Springer Nature
38 публикаций, 19.59%
|
|
|
MDPI
23 публикации, 11.86%
|
|
|
Association for Computing Machinery (ACM)
17 публикаций, 8.76%
|
|
|
Wiley
5 публикаций, 2.58%
|
|
|
Oxford University Press
3 публикации, 1.55%
|
|
|
SAGE
2 публикации, 1.03%
|
|
|
American Institute of Aeronautics and Astronautics (AIAA)
1 публикация, 0.52%
|
|
|
ASME International
1 публикация, 0.52%
|
|
|
MIT Press
1 публикация, 0.52%
|
|
|
Cold Spring Harbor Laboratory
1 публикация, 0.52%
|
|
|
The Japan Society of Plasma Science and Nuclear Fusion Research (JSPF)
1 публикация, 0.52%
|
|
|
Infra-M Academic Publishing House
1 публикация, 0.52%
|
|
|
Pleiades Publishing
1 публикация, 0.52%
|
|
|
Optica Publishing Group
1 публикация, 0.52%
|
|
|
Arizona State University
1 публикация, 0.52%
|
|
|
Institute for Operations Research and the Management Sciences (INFORMS)
1 публикация, 0.52%
|
|
|
10
20
30
40
50
60
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
194
Всего цитирований:
194
Цитирований c 2024:
69
(35.57%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Benítez-Hidalgo A. et al. jMetalPy: A Python framework for multi-objective optimization with metaheuristics // Swarm and Evolutionary Computation. 2019. Vol. 51. p. 100598.
ГОСТ со всеми авторами (до 50)
Скопировать
Benítez-Hidalgo A., Fernández Nebro A., Nieto J. G., Oregi I., Del Ser J. jMetalPy: A Python framework for multi-objective optimization with metaheuristics // Swarm and Evolutionary Computation. 2019. Vol. 51. p. 100598.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.swevo.2019.100598
UR - https://doi.org/10.1016/j.swevo.2019.100598
TI - jMetalPy: A Python framework for multi-objective optimization with metaheuristics
T2 - Swarm and Evolutionary Computation
AU - Benítez-Hidalgo, Antonio
AU - Fernández Nebro, Antonio
AU - Nieto, Jose Garcia
AU - Oregi, I.
AU - Del Ser, Javier
PY - 2019
DA - 2019/12/01
PB - Elsevier
SP - 100598
VL - 51
SN - 2210-6502
SN - 2210-6510
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2019_Benítez-Hidalgo,
author = {Antonio Benítez-Hidalgo and Antonio Fernández Nebro and Jose Garcia Nieto and I. Oregi and Javier Del Ser},
title = {jMetalPy: A Python framework for multi-objective optimization with metaheuristics},
journal = {Swarm and Evolutionary Computation},
year = {2019},
volume = {51},
publisher = {Elsevier},
month = {dec},
url = {https://doi.org/10.1016/j.swevo.2019.100598},
pages = {100598},
doi = {10.1016/j.swevo.2019.100598}
}