том 161 страницы 105061

Hybrid and automated machine learning approaches for oil fields development: The case study of Volve field, North Sea

Тип публикацииJournal Article
Дата публикации2022-04-01
scimago Q1
wos Q1
БС1
SJR1.040
CiteScore9.3
Impact factor4.4
ISSN00983004, 18737803
Information Systems
Computers in Earth Sciences
Краткое описание
The paper describes the usage of intelligent approaches for field development tasks that may assist a decision-making process. We focused on the problem of wells location optimization and two tasks within it: improving the quality of oil production estimation and estimation of reservoir characteristics for appropriate wells allocation and parametrization, using machine learning methods. For oil production estimation, we implemented and investigated the quality of forecasting models: physics-based, pure data-driven, and hybrid one. The CRMIP model was chosen as a physics-based approach. We compare it with the machine learning and hybrid methods in a frame of oil production forecasting task. In the investigation of reservoir characteristics for wells location choice, we automated the seismic analysis using evolutionary identification of convolutional neural network for the reservoir detection. The Volve oil field dataset was used as a case study to conduct the experiments. The implemented approaches can be used to analyze different oil fields or adapted to similar physics-related problems.
Найдено 
Найдено 

Топ-30

Журналы

1
2
SPE Reservoir Evaluation and Engineering
2 публикации, 7.69%
Energies
2 публикации, 7.69%
Lecture Notes in Networks and Systems
2 публикации, 7.69%
ISPRS International Journal of Geo-Information
1 публикация, 3.85%
Intelligent Systems with Applications
1 публикация, 3.85%
Computers and Geosciences
1 публикация, 3.85%
WSEAS TRANSACTIONS ON ELECTRONICS
1 публикация, 3.85%
Journal of Molecular Liquids
1 публикация, 3.85%
Energy Advances
1 публикация, 3.85%
Geoenergy Science and Engineering
1 публикация, 3.85%
Frontiers in Earth Science
1 публикация, 3.85%
Scientific Reports
1 публикация, 3.85%
Sensors
1 публикация, 3.85%
Computers, Materials and Continua
1 публикация, 3.85%
Advances in Computational Intelligence and Robotics
1 публикация, 3.85%
AEJ - Alexandria Engineering Journal
1 публикация, 3.85%
Lecture Notes in Computer Science
1 публикация, 3.85%
Applied Organometallic Chemistry
1 публикация, 3.85%
Earth-Science Reviews
1 публикация, 3.85%
1
2

Издатели

1
2
3
4
5
6
7
Elsevier
7 публикаций, 26.92%
Society of Petroleum Engineers
5 публикаций, 19.23%
MDPI
4 публикации, 15.38%
Springer Nature
4 публикации, 15.38%
World Scientific and Engineering Academy and Society (WSEAS)
1 публикация, 3.85%
Royal Society of Chemistry (RSC)
1 публикация, 3.85%
Frontiers Media S.A.
1 публикация, 3.85%
Tech Science Press
1 публикация, 3.85%
IGI Global
1 публикация, 3.85%
Wiley
1 публикация, 3.85%
1
2
3
4
5
6
7
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
26
Поделиться
Цитировать
ГОСТ |
Цитировать
Nikitin N. O. et al. Hybrid and automated machine learning approaches for oil fields development: The case study of Volve field, North Sea // Computers and Geosciences. 2022. Vol. 161. p. 105061.
ГОСТ со всеми авторами (до 50) Скопировать
Nikitin N. O., Hvatov A., Vychuzhanin P., Revin I., Kalyuzhnaya A. Hybrid and automated machine learning approaches for oil fields development: The case study of Volve field, North Sea // Computers and Geosciences. 2022. Vol. 161. p. 105061.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.cageo.2022.105061
UR - https://doi.org/10.1016/j.cageo.2022.105061
TI - Hybrid and automated machine learning approaches for oil fields development: The case study of Volve field, North Sea
T2 - Computers and Geosciences
AU - Nikitin, Nikolay O
AU - Hvatov, Alexander
AU - Vychuzhanin, Pavel
AU - Revin, Ilia
AU - Kalyuzhnaya, Anna
PY - 2022
DA - 2022/04/01
PB - Elsevier
SP - 105061
VL - 161
SN - 0098-3004
SN - 1873-7803
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2022_Nikitin,
author = {Nikolay O Nikitin and Alexander Hvatov and Pavel Vychuzhanin and Ilia Revin and Anna Kalyuzhnaya},
title = {Hybrid and automated machine learning approaches for oil fields development: The case study of Volve field, North Sea},
journal = {Computers and Geosciences},
year = {2022},
volume = {161},
publisher = {Elsevier},
month = {apr},
url = {https://doi.org/10.1016/j.cageo.2022.105061},
pages = {105061},
doi = {10.1016/j.cageo.2022.105061}
}