Hybrid and automated machine learning approaches for oil fields development: The case study of Volve field, North Sea

Тип документаJournal Article
Дата публикации2022-04-01
Название журналаComputers and Geosciences
ИздательElsevier
Квартиль по SCImagoQ1
Квартиль по Web of ScienceQ1
Импакт-фактор 20215.17
ISSN00983004
Information Systems
Computers in Earth Sciences
Пристатейные ссылки: 58
Automated evolutionary approach for the design of composite machine learning pipelines
Nikitin N.O., Vychuzhanin P., Sarafanov M., Polonskaia I.S., Revin I., Barabanova I.V., Maximov G., Kalyuzhnaya A.V., Boukhanovsky A.
Q1 Future Generation Computer Systems 2022 цитирований: 4
Short-Term River Flood Forecasting Using Composite Models and Automated Machine Learning: The Case Study of Lena River
Sarafanov M., Borisova Y., Maslyaev M., Revin I., Maximov G., Nikitin N.O.
Q1 Water (Switzerland) 2021 цитирований: 2
Open Access
Open access
Quality control of microseismic P-phase arrival picks in coal mine based on machine learning
Zhu M., Cheng J., Zhang Z.
Q1 Computers and Geosciences 2021 цитирований: 1
Multi-domain diffraction identification: A supervised deep learning technique for seismic diffraction classification
Lowney B., Lokmer I., O'Brien G.S.
Q1 Computers and Geosciences 2021 цитирований: 2
A machine learning approach to quality control oceanographic data
Castelão G.P.
Q1 Computers and Geosciences 2021 цитирований: 1
Automatic picking of multi-mode surface-wave dispersion curves based on machine learning clustering methods
Wang Z., Sun C., Wu D.
Q1 Computers and Geosciences 2021 цитирований: 4
Imputation of missing well log data by random forest and its uncertainty analysis
Feng R., Grana D., Balling N.
Q1 Computers and Geosciences 2021 цитирований: 12
A stacking methodology of machine learning for 3D geological modeling with geological-geophysical datasets, Laochang Sn camp, Gejiu (China)
Jia R., Lv Y., Wang G., Carranza E., Chen Y., Wei C., Zhang Z.
Q1 Computers and Geosciences 2021 цитирований: 11
Automated Evolutionary Design of CNN Classifiers for Object Recognition on Satellite Images
Polonskaia I.S., Aliev I.R., Nikitin N.O.
Q2 Procedia Computer Science 2021 цитирований: 1
Hybrid Modelling of Environmental Processes using Composite Models
Borisova J., Aladina A., Nikitin N.O.
Q2 Procedia Computer Science 2021 цитирований: 1
Machine learning based decline curve analysis for short-term oil production forecast
Tadjer A., Hong A., Bratvold R.B.
Q2 Energy Exploration and Exploitation 2021 цитирований: 7
Open Access
Open access
Direct Multivariate Simulation - A stepwise conditional transformation for multivariate geostatistical simulation
de Figueiredo L.P., Schmitz T., Lunelli R., Roisenberg M., Santana de Freitas D., Grana D.
Q1 Computers and Geosciences 2021 цитирований: 2
A Deep-Learning-Based Approach for Reservoir Production Forecast under Uncertainty
Zhong Z., Sun A.Y., Ren B., Wang Y.
Q1 SPE Journal 2021 цитирований: 8
Four Dimensional Gravity Forward Model in a Deep Reservoir
Mancinelli P.
Q1 Frontiers in Earth Science 2020 цитирований: 2
Open Access
Open access
Automatic evolutionary learning of composite models with knowledge enrichment
Kalyuzhnaya A.V., Nikitin N.O., Vychuzhanin P., Hvatov A., Boukhanovsky A.
GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion 2020 цитирований: 6
Метрики
Поделиться
Цитировать
ГОСТ |
Цитировать
1. Nikitin N. O. и др. Hybrid and automated machine learning approaches for oil fields development: The case study of Volve field, North Sea // Computers & Geosciences. 2022. Т. 161. С. 105061.
RIS |
Цитировать

TY - JOUR

DO - 10.1016/j.cageo.2022.105061

UR - http://dx.doi.org/10.1016/j.cageo.2022.105061

TI - Hybrid and automated machine learning approaches for oil fields development: The case study of Volve field, North Sea

T2 - Computers & Geosciences

AU - Nikitin, Nikolay O.

AU - Revin, Ilia

AU - Hvatov, Alexander

AU - Vychuzhanin, Pavel

AU - Kalyuzhnaya, Anna V.

PY - 2022

DA - 2022/04

PB - Elsevier BV

SP - 105061

VL - 161

SN - 0098-3004

ER -

BibTex |
Цитировать

@article{Nikitin_2022,

doi = {10.1016/j.cageo.2022.105061},

url = {https://doi.org/10.1016%2Fj.cageo.2022.105061},

year = 2022,

month = {apr},

publisher = {Elsevier {BV}},

volume = {161},

pages = {105061},

author = {Nikolay O. Nikitin and Ilia Revin and Alexander Hvatov and Pavel Vychuzhanin and Anna V. Kalyuzhnaya},

title = {Hybrid and automated machine learning approaches for oil fields development: The case study of Volve field, North Sea},

journal = {Computers {\&}amp$\mathsemicolon$ Geosciences}

}

MLA
Цитировать
Nikitin, Nikolay O., et al. “Hybrid and Automated Machine Learning Approaches for Oil Fields Development: The Case Study of Volve Field, North Sea.” Computers & Geosciences, vol. 161, Apr. 2022, p. 105061. Crossref, https://doi.org/10.1016/j.cageo.2022.105061.