Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running
Тип публикации: Journal Article
Дата публикации: 2020-12-01
scimago Q2
wos Q2
БС2
SJR: 0.614
CiteScore: 3.5
Impact factor: 1.9
ISSN: 01679457, 18727646
PubMed ID:
33132194
General Medicine
Biophysics
Experimental and Cognitive Psychology
Orthopedics and Sports Medicine
Краткое описание
There are tremendous opportunities to advance science, clinical care, sports performance, and societal health if we are able to develop tools for monitoring musculoskeletal loading (e.g., forces on bones or muscles) outside the lab. While wearable sensors enable non-invasive monitoring of human movement in applied situations, current commercial wearables do not estimate tissue-level loading on structures inside the body. Here we explore the feasibility of using wearable sensors to estimate tibial bone force during running. First, we used lab-based data and musculoskeletal modeling to estimate tibial force for ten participants running across a range of speeds and slopes. Next, we converted lab-based data to signals feasibly measured with wearables (inertial measurement units on the foot and shank, and pressure-sensing insoles) and used these data to develop two multi-sensor algorithms for estimating peak tibial force: one physics-based and one machine learning. Additionally, to reflect current running wearables that utilize running impact metrics to infer musculoskeletal loading or injury risk, we estimated tibial force using a commonly measured impact metric, the ground reaction force vertical average loading rate (VALR). Using VALR to estimate peak tibial force resulted in a mean absolute percent error of 9.9%, which was no more accurate than a theoretical step counter that assumed the same peak force for every running stride. Our physics-based algorithm reduced error to 5.2%, and our machine learning algorithm reduced error to 2.6%. Further, to gain insights into how force estimation accuracy relates to overuse injury risk, we computed bone damage expected due to a given loading cycle. We found that modest errors in tibial force translated into large errors in bone damage estimates. For example, a 9.9% error in tibial force using VALR translated into 104% error in estimated bone damage. Encouragingly, the physics-based and machine learning algorithms reduced damage errors to 41% and 18%, respectively. This study highlights the exciting potential to combine wearables, musculoskeletal biomechanics and machine learning to develop more accurate tools for monitoring musculoskeletal loading in applied situations.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
2
4
6
8
10
12
|
|
|
Sensors
11 публикаций, 16.42%
|
|
|
Sports Biomechanics
4 публикации, 5.97%
|
|
|
Sports Medicine
4 публикации, 5.97%
|
|
|
Journal of Biomechanics
4 публикации, 5.97%
|
|
|
Journal of Sports Sciences
4 публикации, 5.97%
|
|
|
Frontiers in Bioengineering and Biotechnology
2 публикации, 2.99%
|
|
|
IEEE Transactions on Neural Systems and Rehabilitation Engineering
2 публикации, 2.99%
|
|
|
Nano Energy
2 публикации, 2.99%
|
|
|
Frontiers in Sports and Active Living
1 публикация, 1.49%
|
|
|
Bioengineering
1 публикация, 1.49%
|
|
|
Frontiers in Neurorobotics
1 публикация, 1.49%
|
|
|
Current Osteoporosis Reports
1 публикация, 1.49%
|
|
|
Journal of Grid Computing
1 публикация, 1.49%
|
|
|
Nature Reviews Disease Primers
1 публикация, 1.49%
|
|
|
iScience
1 публикация, 1.49%
|
|
|
Composites Science and Technology
1 публикация, 1.49%
|
|
|
Footwear Science
1 публикация, 1.49%
|
|
|
Wearable Technologies
1 публикация, 1.49%
|
|
|
medRxiv : the preprint server for health sciences
1 публикация, 1.49%
|
|
|
Handbook of Research on In-Country Determinants and Implications of Foreign Land Acquisitions
1 публикация, 1.49%
|
|
|
Scientific Reports
1 публикация, 1.49%
|
|
|
Computers in Biology and Medicine
1 публикация, 1.49%
|
|
|
ACM Computing Surveys
1 публикация, 1.49%
|
|
|
Archives of Computational Methods in Engineering
1 публикация, 1.49%
|
|
|
Journal of Strength and Conditioning Research
1 публикация, 1.49%
|
|
|
PeerJ
1 публикация, 1.49%
|
|
|
Journal of Sport and Health Science
1 публикация, 1.49%
|
|
|
IEEE Transactions on Biomedical Engineering
1 публикация, 1.49%
|
|
|
Materials Today Bio
1 публикация, 1.49%
|
|
|
2
4
6
8
10
12
|
Издатели
|
2
4
6
8
10
12
14
|
|
|
MDPI
14 публикаций, 20.9%
|
|
|
Elsevier
13 публикаций, 19.4%
|
|
|
Springer Nature
12 публикаций, 17.91%
|
|
|
Taylor & Francis
9 публикаций, 13.43%
|
|
|
Cold Spring Harbor Laboratory
6 публикаций, 8.96%
|
|
|
Frontiers Media S.A.
4 публикации, 5.97%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 4.48%
|
|
|
Cambridge University Press
1 публикация, 1.49%
|
|
|
IGI Global
1 публикация, 1.49%
|
|
|
Association for Computing Machinery (ACM)
1 публикация, 1.49%
|
|
|
Ovid Technologies (Wolters Kluwer Health)
1 публикация, 1.49%
|
|
|
PeerJ
1 публикация, 1.49%
|
|
|
Wiley
1 публикация, 1.49%
|
|
|
2
4
6
8
10
12
14
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
67
Всего цитирований:
67
Цитирований c 2024:
35
(52.24%)
Цитировать
ГОСТ |
RIS |
BibTex
Цитировать
ГОСТ
Скопировать
Matijevich E. et al. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running // Human Movement Science. 2020. Vol. 74. p. 102690.
ГОСТ со всеми авторами (до 50)
Скопировать
Matijevich E., Scott L. R., Volgyesi P., Derry K. H., ZELIK K. E. Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running // Human Movement Science. 2020. Vol. 74. p. 102690.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.humov.2020.102690
UR - https://doi.org/10.1016/j.humov.2020.102690
TI - Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running
T2 - Human Movement Science
AU - Matijevich, Emily
AU - Scott, Leon R
AU - Volgyesi, Peter
AU - Derry, Kendall H
AU - ZELIK, KARL E.
PY - 2020
DA - 2020/12/01
PB - Elsevier
SP - 102690
VL - 74
PMID - 33132194
SN - 0167-9457
SN - 1872-7646
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2020_Matijevich,
author = {Emily Matijevich and Leon R Scott and Peter Volgyesi and Kendall H Derry and KARL E. ZELIK},
title = {Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running},
journal = {Human Movement Science},
year = {2020},
volume = {74},
publisher = {Elsevier},
month = {dec},
url = {https://doi.org/10.1016/j.humov.2020.102690},
pages = {102690},
doi = {10.1016/j.humov.2020.102690}
}