Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow
A Rakhimbekova
1
,
Valentina A Afonina
1
,
T R Gimadiev
2
,
Ravil N Mukhametgaleev
1
,
Ramil I Nugmanov
1
,
Igor I Baskin
3
,
A. A. Varnek
2, 4
1
2
Тип публикации: Journal Article
Дата публикации: 2021-11-01
scimago Q3
wos Q3
БС1
SJR: 0.305
CiteScore: 3.0
Impact factor: 1.7
ISSN: 09599436, 1364551X
General Chemistry
Краткое описание
The synthesis of the desired chemical compound is the main task of synthetic organic chemistry. The predictions of reaction conditions and some important quantitative characteristics of chemical reactions as yield and reaction rate can substantially help in the development of optimal synthetic routes and assessment of synthesis cost. Theoretical assessment of these parameters can be performed with the help of modern machine-learning approaches, which use available experimental data to develop predictive models called quantitative or qualitative structure–reactivity relationship (QSRR) modelling. In the article, we review the state-of-the-art in the QSRR area and give our opinion on emerging trends in this field.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
|
|
|
Toxins
1 публикация, 8.33%
|
|
|
Environmental Technology and Innovation
1 публикация, 8.33%
|
|
|
Chemical Science
1 публикация, 8.33%
|
|
|
Mendeleev Communications
1 публикация, 8.33%
|
|
|
Chemical Physics Letters
1 публикация, 8.33%
|
|
|
Journal of Chemical Information and Modeling
1 публикация, 8.33%
|
|
|
Molecular Informatics
1 публикация, 8.33%
|
|
|
Journal of Physical Chemistry A
1 публикация, 8.33%
|
|
|
Molecular Diversity
1 публикация, 8.33%
|
|
|
Lecture Notes in Computer Science
1 публикация, 8.33%
|
|
|
Computers and Chemical Engineering
1 публикация, 8.33%
|
|
|
1
|
Издатели
|
1
2
3
|
|
|
Elsevier
3 публикации, 25%
|
|
|
American Chemical Society (ACS)
2 публикации, 16.67%
|
|
|
Wiley
2 публикации, 16.67%
|
|
|
Springer Nature
2 публикации, 16.67%
|
|
|
MDPI
1 публикация, 8.33%
|
|
|
Royal Society of Chemistry (RSC)
1 публикация, 8.33%
|
|
|
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 8.33%
|
|
|
1
2
3
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
12
Всего цитирований:
12
Цитирований c 2025:
1
(8.33%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Madzhidov T. I. et al. Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow // Mendeleev Communications. 2021. Vol. 31. No. 6. pp. 769-780.
ГОСТ со всеми авторами (до 50)
Скопировать
Madzhidov T. I., Rakhimbekova A., Afonina V. A., Gimadiev T. R., Mukhametgaleev R. N., Nugmanov R. I., Baskin I. I., Varnek A. A. Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow // Mendeleev Communications. 2021. Vol. 31. No. 6. pp. 769-780.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1016/j.mencom.2021.11.003
UR - https://doi.org/10.1016/j.mencom.2021.11.003
TI - Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow
T2 - Mendeleev Communications
AU - Madzhidov, Timur I
AU - Rakhimbekova, A
AU - Afonina, Valentina A
AU - Gimadiev, T R
AU - Mukhametgaleev, Ravil N
AU - Nugmanov, Ramil I
AU - Baskin, Igor I
AU - Varnek, A. A.
PY - 2021
DA - 2021/11/01
PB - OOO Zhurnal "Mendeleevskie Soobshcheniya"
SP - 769-780
IS - 6
VL - 31
SN - 0959-9436
SN - 1364-551X
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2021_Madzhidov,
author = {Timur I Madzhidov and A Rakhimbekova and Valentina A Afonina and T R Gimadiev and Ravil N Mukhametgaleev and Ramil I Nugmanov and Igor I Baskin and A. A. Varnek},
title = {Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow},
journal = {Mendeleev Communications},
year = {2021},
volume = {31},
publisher = {OOO Zhurnal "Mendeleevskie Soobshcheniya"},
month = {nov},
url = {https://doi.org/10.1016/j.mencom.2021.11.003},
number = {6},
pages = {769--780},
doi = {10.1016/j.mencom.2021.11.003}
}
Цитировать
MLA
Скопировать
Madzhidov, Timur I., et al. “Machine learning modelling of chemical reaction characteristics: yesterday, today, tomorrow.” Mendeleev Communications, vol. 31, no. 6, Nov. 2021, pp. 769-780. https://doi.org/10.1016/j.mencom.2021.11.003.