том 126 страницы 240-247

Heat of fusion of polymer crystals by fast scanning calorimetry

P. Cebe 1, 2, 3, 4
David Thomas 1, 2, 3, 4
John Merfeld 1, 2, 3, 4
Benjamin P Partlow 5
D. L. Kaplan 5
Rufina G. Alamo 6
Andreas Wurm 7
E Zhuravlev 7
1
 
Department of Physics and Astronomy
2
 
Center for Nanoscopic Physics
4
 
Medford MA 02155 USA
6
 
Department of Chemical and Biomedical Engineering, FAMU-FSU, College of Engineering, Tallahassee FL 32310 USA
Тип публикацииJournal Article
Дата публикации2017-09-01
scimago Q1
wos Q2
БС1
SJR0.843
CiteScore7.7
Impact factor4.5
ISSN00323861, 18732291
Materials Chemistry
Organic Chemistry
Polymers and Plastics
Краткое описание
Knowledge of the specific equilibrium heat of fusion of polymer crystals, Δhf0 [J/g], is an essential thermal property of polymers which permits the degree of crystallinity to be obtained from thermal measurements. We describe an approach to evaluate Δhf0(Tm) and implement this method using fast scanning calorimetry (FSC). Our method uses the measured enthalpy of melting plotted against the product of the sample mass times its crystallinity for samples with variable masses and/or crystallinities. Then, Δhf0 is obtained from the slope of the entire data set, reducing errors in the measurement. To demonstrate the method and give proof of principle, we measure Δhf0(Tm) of samples of a narrow fraction of linear polyethylene (PE) with a weight average molecular weight of 60,700 g/mol, whose thermal properties are already known in the literature. For PE, we obtain Δhf0(PE) = (281 ± 6) J/g at Tm = 136 °C, in close agreement with literature values. Then, we apply the method to determine Δhf0(Tm) of silk fibroin, a fibrous protein, yielding a first estimate of the heat of fusion of silk crystals, Δhf0(Silk) ∼ (137 ± 7) J/g. Advantages include: reduction of error, applicability to all types of polymers, copolymers, and blends regardless of degree of crystallinity, and applicability to biomaterials which may require fast scanning rates of FSC to prevent degradation.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
8
Thermochimica Acta
8 публикаций, 12.5%
Polymer
4 публикации, 6.25%
Journal of Molecular Liquids
4 публикации, 6.25%
Journal of Chemical Thermodynamics
3 публикации, 4.69%
RSC Advances
3 публикации, 4.69%
Journal of Thermal Analysis and Calorimetry
2 публикации, 3.13%
Polymers
2 публикации, 3.13%
Polymer Testing
2 публикации, 3.13%
Macromolecules
2 публикации, 3.13%
Physical Chemistry Chemical Physics
2 публикации, 3.13%
Molecules
2 публикации, 3.13%
Journal of Materials Research and Technology
2 публикации, 3.13%
Polymer Degradation and Stability
2 публикации, 3.13%
Biochimica et Biophysica Acta - General Subjects
1 публикация, 1.56%
Nanomaterials
1 публикация, 1.56%
International Journal of Molecular Sciences
1 публикация, 1.56%
Food Biophysics
1 публикация, 1.56%
Nanoscale Research Letters
1 публикация, 1.56%
Sustainable Chemistry and Pharmacy
1 публикация, 1.56%
Fluid Phase Equilibria
1 публикация, 1.56%
International Journal of Pharmaceutics
1 публикация, 1.56%
Canadian Journal of Chemical Engineering
1 публикация, 1.56%
Physica Status Solidi (A) Applications and Materials Science
1 публикация, 1.56%
Journal of Physical Chemistry A
1 публикация, 1.56%
Industrial & Engineering Chemistry Research
1 публикация, 1.56%
Crystal Growth and Design
1 публикация, 1.56%
Soft Matter
1 публикация, 1.56%
Reviews and Advances in Chemistry
1 публикация, 1.56%
Handbook of Thermal Analysis and Calorimetry
1 публикация, 1.56%
1
2
3
4
5
6
7
8

Издатели

5
10
15
20
25
30
35
Elsevier
32 публикации, 50%
MDPI
7 публикаций, 10.94%
American Chemical Society (ACS)
7 публикаций, 10.94%
Royal Society of Chemistry (RSC)
6 публикаций, 9.38%
Springer Nature
4 публикации, 6.25%
Wiley
4 публикации, 6.25%
Pleiades Publishing
1 публикация, 1.56%
AIP Publishing
1 публикация, 1.56%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 1.56%
A and V Publications
1 публикация, 1.56%
5
10
15
20
25
30
35
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
64
Поделиться
Цитировать
ГОСТ |
Цитировать
Cebe P. et al. Heat of fusion of polymer crystals by fast scanning calorimetry // Polymer. 2017. Vol. 126. pp. 240-247.
ГОСТ со всеми авторами (до 50) Скопировать
Cebe P., Thomas D., Merfeld J., Partlow B. P., Kaplan D. L., Alamo R. G., Wurm A., Zhuravlev E., Schick C. H. Heat of fusion of polymer crystals by fast scanning calorimetry // Polymer. 2017. Vol. 126. pp. 240-247.
RIS |
Цитировать
TY - JOUR
DO - 10.1016/j.polymer.2017.08.042
UR - https://doi.org/10.1016/j.polymer.2017.08.042
TI - Heat of fusion of polymer crystals by fast scanning calorimetry
T2 - Polymer
AU - Cebe, P.
AU - Thomas, David
AU - Merfeld, John
AU - Partlow, Benjamin P
AU - Kaplan, D. L.
AU - Alamo, Rufina G.
AU - Wurm, Andreas
AU - Zhuravlev, E
AU - Schick, C. H.
PY - 2017
DA - 2017/09/01
PB - Elsevier
SP - 240-247
VL - 126
SN - 0032-3861
SN - 1873-2291
ER -
BibTex
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2017_Cebe,
author = {P. Cebe and David Thomas and John Merfeld and Benjamin P Partlow and D. L. Kaplan and Rufina G. Alamo and Andreas Wurm and E Zhuravlev and C. H. Schick},
title = {Heat of fusion of polymer crystals by fast scanning calorimetry},
journal = {Polymer},
year = {2017},
volume = {126},
publisher = {Elsevier},
month = {sep},
url = {https://doi.org/10.1016/j.polymer.2017.08.042},
pages = {240--247},
doi = {10.1016/j.polymer.2017.08.042}
}