том 97 издание 4 страницы 1992-2002

NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties

Xiaozhi Wang 1, 2
Hai Long Wu 1, 2, 3, 4, 5
Hailong Wu 1, 2, 3, 4, 5
Yao Chen 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Baoshuo Jia 1, 2, 3, 4, 5
Huan Fang 1, 2, 3, 4, 5
Xiaoyue Yin 1, 2, 3, 4, 5
Xiaoming Yin 1, 2
YANPING ZHAO 1, 2, 3, 4, 5
Yan Ping Zhao 1, 2
Ru Qin Yu 1, 2, 3, 4, 5
1
 
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Changsha, China
4
 
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering
7
 
Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry
9
 
Hunan Key Lab of Biomedical Materials and Devices, College of Life Sciences and Chemistry, Zhuzhou, China
Тип публикацииJournal Article
Дата публикации2025-01-17
scimago Q1
wos Q1
БС1
SJR1.533
CiteScore11.6
Impact factor6.7
ISSN00032700, 15206882, 21542686
Краткое описание
Small molecule near-infrared (NIR) fluorophores play a critical role in disease diagnosis and early detection of various markers in living organisms. To accelerate their development and design, a deep learning platform, NIRFluor, was established to rapidly screen small molecule NIR fluorophores with the desired optical properties. The core component of NIRFluor is a state-of-the-art deep learning model trained on 5179 experimental big data. First, novel hybrid fingerprints including Morgan fingerprints, physicochemical properties, and solvent properties were proposed. Then, a powerful deep learning model, multitask fingerprint-enhanced graph convolutional network (MT-FinGCN), was designed, which combines fingerprint information and molecule graph structure information to achieve accurate prediction of six properties (absorption wavelength, emission wavelength, Stokes shift, extinction coefficient, photoluminescence quantum yield, and lifetime) of different small molecule NIR fluorophores in different solvents. Furthermore, the "black-box" of the GCN model was opened through interpretability studies. Finally, the well-trained models were placed on the web platform NIRFluor for free use (https://nirfluor.aicbsc.com).
Найдено 
Найдено 

Топ-30

Журналы

1
2
Journal of Chemical Information and Modeling
2 публикации, 33.33%
Aggregate
1 публикация, 16.67%
Chemical Science
1 публикация, 16.67%
Nanomaterials
1 публикация, 16.67%
Digital Discovery
1 публикация, 16.67%
1
2

Издатели

1
2
American Chemical Society (ACS)
2 публикации, 33.33%
Royal Society of Chemistry (RSC)
2 публикации, 33.33%
Wiley
1 публикация, 16.67%
MDPI
1 публикация, 16.67%
1
2
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
6
Поделиться
Цитировать
ГОСТ |
Цитировать
Wang X. et al. NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties // Analytical Chemistry. 2025. Vol. 97. No. 4. pp. 1992-2002.
ГОСТ со всеми авторами (до 50) Скопировать
Wang X. et al. NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties // Analytical Chemistry. 2025. Vol. 97. No. 4. pp. 1992-2002.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/acs.analchem.4c01953
UR - https://pubs.acs.org/doi/10.1021/acs.analchem.4c01953
TI - NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties
T2 - Analytical Chemistry
AU - Wang, Xiaozhi
AU - Wu, Hai Long
AU - Wu, Hailong
AU - Chen, Yao
AU - Jia, Baoshuo
AU - Fang, Huan
AU - Yin, Xiaoyue
AU - Yin, Xiaoming
AU - ZHAO, YANPING
AU - Zhao, Yan Ping
AU - Yu, Ru Qin
PY - 2025
DA - 2025/01/17
PB - American Chemical Society (ACS)
SP - 1992-2002
IS - 4
VL - 97
SN - 0003-2700
SN - 1520-6882
SN - 2154-2686
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2025_Wang,
author = {Xiaozhi Wang and Hai Long Wu and Hailong Wu and Yao Chen and Baoshuo Jia and Huan Fang and Xiaoyue Yin and Xiaoming Yin and YANPING ZHAO and Yan Ping Zhao and Ru Qin Yu and others},
title = {NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties},
journal = {Analytical Chemistry},
year = {2025},
volume = {97},
publisher = {American Chemical Society (ACS)},
month = {jan},
url = {https://pubs.acs.org/doi/10.1021/acs.analchem.4c01953},
number = {4},
pages = {1992--2002},
doi = {10.1021/acs.analchem.4c01953}
}
MLA
Цитировать
Wang, Xiaozhi, et al. “NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties.” Analytical Chemistry, vol. 97, no. 4, Jan. 2025, pp. 1992-2002. https://pubs.acs.org/doi/10.1021/acs.analchem.4c01953.