Journal of Physical Chemistry C, volume 120, issue 11, pages 5883-5889

Dynamics of Energy Transfer from CdSe Nanocrystals to Triplet States of Anthracene Ligand Molecules

Publication typeJournal Article
Publication date2016-03-16
scimago Q1
SJR0.957
CiteScore6.5
Impact factor3.3
ISSN19327447, 19327455
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
Physical and Theoretical Chemistry
General Energy
Abstract
The combination of CdSe semiconductor nanocrystals with 9-anthracene carboxylic acid ligands can sensitize triplet–triplet annihilation on the emitter molecule diphenylanthracene. This hybrid system has recently been shown to upconvert visible light (532 nm) to ultraviolet light (420 nm) (Huang, Z., et al. Nano Lett. 2015, 15, 5552–5557). In the current paper, time-resolved photoluminescence measurements are used to characterize the kinetics of the energy transfer from the CdSe exciton state to the triplet state of the anthracene ligand. We find that 9-anthracene carboxylic acid binds to CdSe according to Poisson statistics with a maximum number of 2–3 ligands per nanocrystal. The CdSe-to-ligand energy transfer rate is 1.5 × 107 s–1. The overall efficiency of the energy transfer appears to be limited by the presence of fast nonradiative decay channels in the nanocrystals and the low coverage of anthracene ligands, resulting from the specific ligand exchange conditions used in this paper. Possible strategi...
Found 
Found 

Top-30

Journals

1
2
3
4
5
1
2
3
4
5

Publishers

2
4
6
8
10
12
14
16
18
2
4
6
8
10
12
14
16
18
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?