том 46 издание 6 страницы 1242-1251

Efficiency of Multiexciton Generation in Colloidal Nanostructures

Тип публикацииJournal Article
Дата публикации2013-03-05
scimago Q1
wos Q1
БС1
SJR5.433
CiteScore30.7
Impact factor17.7
ISSN00014842, 15204898
General Chemistry
General Medicine
Краткое описание
Solar energy production, one of the world's most important unsolved problems, has the potential to be a source of clean, renewable energy if scientists can find a way of generating cheap and efficient solar cells. Generation of multiple excitons from single photons is one way to increase the efficiency of solar energy collection, but the process suffers from low efficiency in bulk materials. An increase of multiexciton generation efficiency in nanocrystals was proposed by Nozik in 2002 and demonstrated by Schaller and Klimov in 2004 in PbSe nanocrystals. Since then, scientists have observed efficient multiexciton generation in nanostructures made of many semiconductors using various measurement techniques. Although the experimental evidence of efficient carrier multiplication is overwhelming, there is no complete theory of this phenomenon. Researchers cannot develop such a theory without a self-consistent description of the Coulomb interaction and a knowledge of mechanisms of electron and hole thermalization in nanostructures. The full theoretical description requires the strength of the Coulomb interaction between exciton and multiexciton states and the thermalization rates, which both vary with the dimensionality of the confining potential. As a result, the efficiency of multiexciton generation depends strongly on the material and the shape of the nanostructure. In this Account, we discuss the theoretical aspects of efficient carrier multiplication in nanostructures. The Coulomb interaction couples single excitons with multiexciton states. Phenomenological many-electron calculations of the evolution of single-photon excitations have shown that efficient multiexciton generation can exist only if the rate of the Coulomb mixing between photo-created exciton and biexciton states is significantly faster than the rate of exciton relaxation. Therefore, to increase multiexciton generation efficiency, we need to either increase the exciton-biexciton mixing rate or suppress the exciton relaxation rate. Following this simple recipe, we show that multiexciton generation efficiency should be higher in semiconductor nanorods and nanoplatelets, which have stronger exciton-biexciton coupling due to the enhancement of the Coulomb interaction through the surrounding medium.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
Journal of Physical Chemistry Letters
5 публикаций, 7.25%
Nano Letters
5 публикаций, 7.25%
ACS Nano
4 публикации, 5.8%
Journal of the American Chemical Society
3 публикации, 4.35%
Chemical Reviews
3 публикации, 4.35%
Nature Communications
3 публикации, 4.35%
Physical Review B
2 публикации, 2.9%
Materials
2 публикации, 2.9%
Chemistry of Materials
2 публикации, 2.9%
Journal of Physical Chemistry C
2 публикации, 2.9%
Nanoscale
2 публикации, 2.9%
Applied Physics Letters
1 публикация, 1.45%
Chemical Physics Reviews
1 публикация, 1.45%
Physical Review Letters
1 публикация, 1.45%
Sensors
1 публикация, 1.45%
Frontiers in Chemistry
1 публикация, 1.45%
Scientific Reports
1 публикация, 1.45%
Nano-Micro Letters
1 публикация, 1.45%
Chinese Physics B
1 публикация, 1.45%
Nano Today
1 публикация, 1.45%
Journal of Alloys and Compounds
1 публикация, 1.45%
Small
1 публикация, 1.45%
Advanced Quantum Technologies
1 публикация, 1.45%
Advanced Materials
1 публикация, 1.45%
ACS Energy Letters
1 публикация, 1.45%
ACS Applied Nano Materials
1 публикация, 1.45%
Energy and Environmental Science
1 публикация, 1.45%
Journal of Materials Chemistry A
1 публикация, 1.45%
Chemical Society Reviews
1 публикация, 1.45%
1
2
3
4
5

Издатели

5
10
15
20
25
30
American Chemical Society (ACS)
26 публикаций, 37.68%
Wiley
8 публикаций, 11.59%
Springer Nature
7 публикаций, 10.14%
Royal Society of Chemistry (RSC)
6 публикаций, 8.7%
AIP Publishing
3 публикации, 4.35%
American Physical Society (APS)
3 публикации, 4.35%
MDPI
3 публикации, 4.35%
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 4.35%
Elsevier
2 публикации, 2.9%
Frontiers Media S.A.
1 публикация, 1.45%
IOP Publishing
1 публикация, 1.45%
Hindawi Limited
1 публикация, 1.45%
Annual Reviews
1 публикация, 1.45%
SPIE-Intl Soc Optical Eng
1 публикация, 1.45%
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
1 публикация, 1.45%
5
10
15
20
25
30
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
69
Поделиться
Цитировать
ГОСТ |
Цитировать
Shabaev A. et al. Efficiency of Multiexciton Generation in Colloidal Nanostructures // Accounts of Chemical Research. 2013. Vol. 46. No. 6. pp. 1242-1251.
ГОСТ со всеми авторами (до 50) Скопировать
Shabaev A., Hellberg C., Efros A. L. Efficiency of Multiexciton Generation in Colloidal Nanostructures // Accounts of Chemical Research. 2013. Vol. 46. No. 6. pp. 1242-1251.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/ar300283j
UR - https://doi.org/10.1021/ar300283j
TI - Efficiency of Multiexciton Generation in Colloidal Nanostructures
T2 - Accounts of Chemical Research
AU - Shabaev, Andrew
AU - Hellberg, C.S.
AU - Efros, Alexander L
PY - 2013
DA - 2013/03/05
PB - American Chemical Society (ACS)
SP - 1242-1251
IS - 6
VL - 46
PMID - 23461547
SN - 0001-4842
SN - 1520-4898
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2013_Shabaev,
author = {Andrew Shabaev and C.S. Hellberg and Alexander L Efros},
title = {Efficiency of Multiexciton Generation in Colloidal Nanostructures},
journal = {Accounts of Chemical Research},
year = {2013},
volume = {46},
publisher = {American Chemical Society (ACS)},
month = {mar},
url = {https://doi.org/10.1021/ar300283j},
number = {6},
pages = {1242--1251},
doi = {10.1021/ar300283j}
}
MLA
Цитировать
Shabaev, Andrew, et al. “Efficiency of Multiexciton Generation in Colloidal Nanostructures.” Accounts of Chemical Research, vol. 46, no. 6, Mar. 2013, pp. 1242-1251. https://doi.org/10.1021/ar300283j.