Journal of Chemical Theory and Computation, volume 7, issue 10, pages 3027-3034

Perspectives on Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions

Publication typeJournal Article
Publication date2011-08-31
scimago Q1
SJR1.457
CiteScore9.9
Impact factor5.7
ISSN15499618, 15499626
PubMed ID:  26598144
Physical and Theoretical Chemistry
Computer Science Applications
Abstract
We present a perspective on the use of diffuse basis functions for electronic structure calculations by density functional theory and wave function theory. We especially emphasize minimally augmented basis sets and calendar basis sets. We base our conclusions on our previous experience with commonly computed quantities, such as bond energies, barrier heights, electron affinities, noncovalent (van der Waals and hydrogen bond) interaction energies, and ionization potentials, on Stephens et al.'s results for optical rotation and on our own new calculations (presented here) of polarizabilities and of potential energy curves of van der Waals complexes. We emphasize the benefits of partial augmentation of the higher-zeta basis sets in preference to full augmentation at a lower ζ level. Benefits and limitations of the use of fully, partially, and minimally augmented basis sets are reviewed for different electronic structure methods and molecular properties. We have found that minimal augmentation is almost always enough for density functional theory (DFT) when applied to ionization potentials, electron affinities, atomization energies, barrier heights, and hydrogen-bond energies. For electric dipole polarizabilities, we find that augmentation beyond minimal has an average effect of 8% at the polarized triple-ζ level and 5% at the polarized quadruple-ζ level. The effects are larger for potential energy curves of van der Waals complexes. The effects are also larger for wave function theory (WFT). Even for WFT though, full augmentation is not needed for most purposes, and a level of augmentation between minimal and full is optimal for most problems. The calendar basis sets named after the months provide a convergent sequence of partially augmented basis sets that can be used for such calculations. The jun-cc-pV(T+d)Z basis set is very useful for MP2-F12 calculations of barrier heights and hydrogen bond strengths.
Found 
Found 

Top-30

Journals

10
20
30
40
50
60
70
80
10
20
30
40
50
60
70
80

Publishers

50
100
150
200
250
50
100
150
200
250
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?