Inorganic Chemistry, volume 48, issue 22, pages 10819-10825

Predicting the cis-trans dichloro configuration of group 15-16 chelated ruthenium olefin metathesis complexes: a DFT and experimental study.

Publication typeJournal Article
Publication date2009-10-20
scimago Q1
SJR0.928
CiteScore7.6
Impact factor4.3
ISSN00201669, 1520510X
PubMed ID:  19842708
Inorganic Chemistry
Physical and Theoretical Chemistry
Abstract
Gradient-corrected (BP86) and hybrid (M06-L) density functional calculations were used to study the relative stability of cis and trans-dichloro X-chelated benzylidene ruthenium complexes (X = O, S, Se, N, P). Calculations in the gas phase differed from experimental results, predicting the trans-dichloro configuration as being more stable in every case. The addition of Poisson-Boltzmann (PBF) continuum approximation (dichloromethane) corrected the disagreement and afforded energies consistent with experimental results. Novel N, Se, and P chelated ruthenium olefin metathesis complexes were synthesized to evaluate calculation predictions. These findings reinforce the importance of including solvent corrections in DFT calculations of ruthenium metathesis catalysts and predict that stronger sigma donors as chelating atoms tend to electronically promote the unusual and less active cis-dichloro configuration.

Top-30

Journals

2
4
6
8
10
12
14
16
2
4
6
8
10
12
14
16

Publishers

5
10
15
20
25
30
35
5
10
15
20
25
30
35
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?