Journal of the American Chemical Society, volume 123, issue 36, pages 8738-8749

Single-Site β-Diiminate Zinc Catalysts for the Alternating Copolymerization of CO2 and Epoxides:  Catalyst Synthesis and Unprecedented Polymerization Activity

Publication typeJournal Article
Publication date2001-08-18
scimago Q1
SJR5.489
CiteScore24.4
Impact factor14.4
ISSN00027863, 15205126
PubMed ID:  11535078
General Chemistry
Catalysis
Biochemistry
Colloid and Surface Chemistry
Abstract
Synthetic routes to zinc beta-diiminate complexes are reported. The synthesis of 11 beta-diimine [(BDI)-H] ligands, with varying N-aryl substituents and bridging structures, is described. These ligands are converted to (BDI)ZnX complexes (X = OAc, Et, N(SiMe3)2, Br, Cl, OH, OMe, O(i)Pr). X-ray structural data revealed that all zinc complexes examined exist as micro-X-bridged dimers in the solid state, with the exception of the zinc ethyl and amido complexes which were monomeric. Complexes of the form (BDI)ZnOR (R = alkyl, acyl) and (BDI)ZnN(SiMe3)2 are highly active catalysts for the alternating copolymerization of epoxides and CO2. Copolymerizations of cyclohexene oxide (CHO) and CO2 with (BDI-1)ZnX [(BDI-1) = 2-((2,6-diisopropylphenyl)amido)-4-((2,6-diisopropylphenyl)imino)-2-pentene)] and (BDI-2)ZnX [(BDI-2) = 2-((2,6-diethylphenyl)amido)-4-((2,6-diethylphenyl)imino)-2-pentene)], where X = OAc, Et, N(SiMe3)2, Br, Cl, OH, OMe, O(i)Pr, were attempted at 50 degrees C and 100 psi CO2. Complexes with X = OAc, N(SiMe3)2, OMe, O(i)Pr all produced polycarbonate by the alternated insertion of CHO and CO2 with similar catalytic activities, comparable molecular weights, and narrow molecular weight distributions (MWD approximately 1.1), indicating the copolymerizations are living. Furthermore, ligand effects were shown to dramatically influence the polymerization activity as minor steric changes accelerated or terminated the polymerization activity.
Found 
Found 

Top-30

Journals

5
10
15
20
25
30
35
40
5
10
15
20
25
30
35
40

Publishers

20
40
60
80
100
120
140
20
40
60
80
100
120
140
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?