Journal of the American Chemical Society, volume 142, issue 23, pages 10438-10445

Ru-Catalyzed, cis-Selective Living Ring-Opening Metathesis Polymerization of Various Monomers, Including a Dendronized Macromonomer, and Implications to Enhanced Shear Stability

Publication typeJournal Article
Publication date2020-05-11
scimago Q1
SJR5.489
CiteScore24.4
Impact factor14.4
ISSN00027863, 15205126
PubMed ID:  32392047
General Chemistry
Catalysis
Biochemistry
Colloid and Surface Chemistry
Abstract
An unsaturated polymer's cis/trans-olefin content has a significant influence on its properties. For polymers obtained by ring-opening metathesis polymerization (ROMP), the cis/trans-olefin content can be tuned by using specific catalysts. However, cis-selective ROMP has suffered from narrow monomer scope and lack of control over the polymerization (giving polymers with broad molecular weight distributions and prohibiting the synthesis of block copolymers). Herein, we report the versatile cis-selective controlled living ROMP of various endo-tricyclo[4.2.2.02,5]deca-3,9-diene and various norbornene derivatives using a fast-initiating dithiolate-chelated Ru catalyst. Polymers with cis-olefin content as high as 99% could be obtained with high molecular weight (up to Mn of 105.1 kDa) and narrow dispersity (<1.4). The living nature of the polymerization was also exploited to prepare block copolymers with high cis-olefin content for the first time. Furthermore, owing to the successful control over the stereochemistry and narrow dispersity, we could compare cis- and trans-rich polynorbornene and found the former to have enhanced resistance to shear degradation.
Found 
Found 

Top-30

Journals

1
2
3
4
5
1
2
3
4
5

Publishers

2
4
6
8
10
12
14
2
4
6
8
10
12
14
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?