Journal of the American Chemical Society, volume 142, issue 9, pages 4367-4378

Switchable Catalysis Improves the Properties of CO2-Derived Polymers: Poly(cyclohexene carbonate-b-ε-decalactone-b-cyclohexene carbonate) Adhesives, Elastomers, and Toughened Plastics

Publication typeJournal Article
Publication date2020-02-20
scimago Q1
SJR5.489
CiteScore24.4
Impact factor14.4
ISSN00027863, 15205126
PubMed ID:  32078313
General Chemistry
Catalysis
Biochemistry
Colloid and Surface Chemistry
Abstract
Carbon dioxide/epoxide copolymerization is an efficient way to add value to waste CO2 and to reduce pollution in polymer manufacturing. Using this process to make low molar mass polycarbonate polyols is a commercially relevant route to new thermosets and polyurethanes. In contrast, high molar mass polycarbonates, produced from CO2, generally under-deliver in terms of properties, and one of the most widely investigated, poly(cyclohexene carbonate), is limited by its low elongation at break and high brittleness. Here, a new catalytic polymerization process is reported that selectively and efficiently yields degradable ABA-block polymers, incorporating 6-23 wt % CO2. The polymers are synthesized using a new, highly active organometallic heterodinuclear Zn(II)/Mg(II) catalyst applied in a one-pot procedure together with biobased ε-decalactone, cyclohexene oxide, and carbon dioxide to make a series of poly(cyclohexene carbonate-b-decalactone-b-cyclohexene carbonate) [PCHC-PDL-PCHC]. The process is highly selective (CO2 selectivity >99% of theoretical value), allows for high monomer conversions (>90%), and yields polymers with predictable compositions, molar mass (from 38-71 kg mol-1), and forms dihydroxyl telechelic chains. These new materials improve upon the properties of poly(cyclohexene carbonate) and, specifically, they show good thermal stability (Td,5 ∼ 280 °C), high toughness (112 MJ m-3), and very high elongation at break (>900%). Materials properties are improved by precisely controlling both the quantity and location of carbon dioxide in the polymer chain. Preliminary studies show that polymers are stable in aqueous environments at room temperature over months, but they are rapidly degraded upon gentle heating in an acidic environment (60 °C, toluene, p-toluene sulfonic acid). The process is likely generally applicable to many other lactones, lactides, anhydrides, epoxides, and heterocumulenes and sets the scene for a host of new applications for CO2-derived polymers.
Found 
Found 

Top-30

Journals

5
10
15
20
25
30
5
10
15
20
25
30

Publishers

10
20
30
40
50
60
70
80
10
20
30
40
50
60
70
80
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?