Journal of the American Chemical Society, volume 142, issue 11, pages 4970-4974

Water-Soluble BODIPY Photocages with Tunable Cellular Localization

Publication typeJournal Article
Publication date2020-02-29
scimago Q1
SJR5.489
CiteScore24.4
Impact factor14.4
ISSN00027863, 15205126
PubMed ID:  32115942
General Chemistry
Catalysis
Biochemistry
Colloid and Surface Chemistry
Abstract
Photoactivation of bioactive molecules allows manipulation of cellular processes with high spatiotemporal precision. The recent emergence of visible-light excitable photoprotecting groups has the potential to further expand the established utility of the photoactivation strategy in biological applications by offering higher tissue penetration, diminished phototoxicity, and compatibility with other light-dependent techniques. Nevertheless, a critical barrier to such applications remains the significant hydrophobicity of most visible-light excitable photocaging groups. Here, we find that applying the conventional 2,6-sulfonation to meso-methyl BODIPY photocages is incompatible with their photoreaction due to an increase in the excited state barrier for photorelease. We present a simple, remote sulfonation solution to BODIPY photocages that imparts water solubility and provides control over cellular permeability while retaining their favorable spectroscopic and photoreaction properties. Peripherally disulfonated BODIPY photocages are cell impermeable, making them useful for modulation of cell-surface receptors, while monosulfonated BODIPY retains the ability to cross the cellular membrane and can modulate intracellular targets. This new approach is generalizable for controlling BODIPY localization and was validated by sensitization of mammalian cells and neurons by visible-light photoactivation of signaling molecules.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
2
4
6
8
10
12

Publishers

5
10
15
20
25
30
35
40
5
10
15
20
25
30
35
40
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?