Journal of Organic Chemistry, volume 66, issue 3, pages 809-823

Efficient Synthesis of Piperidine Derivatives. Development of Metal Triflate-Catalyzed Diastereoselective Nucleophilic Substitution Reactions of 2-Methoxy- and 2-Acyloxypiperidines

Publication typeJournal Article
Publication date2001-01-06
scimago Q2
wos Q1
SJR0.724
CiteScore6.2
Impact factor3.3
ISSN00223263, 15206904
PubMed ID:  11430100
Organic Chemistry
Abstract
Nucleophilic substitution reactions of 2-methoxy- and 2-acyloxypiperidines were investigated. First, new and efficient methods for the preparation of the starting piperidine derivatives were developed. N-Benzyloxycarbonyl-2-methoxypiperidine (3) and 3-substituted-2-acyloxy-N-benzyloxycarbonylpiperidines (4a-d), which are recognized as the simplest imino-sugars, were prepared and were examined as substrates for nucleophilic substitution reactions with silyl enolates under the influence of catalytic amounts of metal triflates (Sc(OTf)3, Sn(OTf)2, Cu(OTf)2, Hf(OTf)4, etc). Among the triflates tested, Sc(OTf)3 gave the best results. It was found that 2-acetoxy-3-benzyloxy-N-benzyloxycarbonylpiperidine (4a) reacted with silyl enolates to afford the 2-alkylated adducts in high cis-selectivity, while 2,3-diacyloxy-N-benzyloxycarbonylpiperidines (4b-d) showed transselectivity. The stereochemical assignments were carefully performed using NMR analysis, X-ray crystallography, and synthetic transformations. Febrifugine (1), a potent antimalarial alkaloid, was successfully synthesized from 2,3-diacetoxy-N-benzyloxycarbonylpiperidine (4b) on the basis of these diastereoselective nucleophilic substitution reactions.
Found 
Found 

Top-30

Journals

2
4
6
8
10
12
14
2
4
6
8
10
12
14

Publishers

5
10
15
20
25
30
35
40
5
10
15
20
25
30
35
40
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?