Journal of Physical Chemistry B, volume 109, issue 19, pages 9505-9516

Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells

Publication typeJournal Article
Publication date2005-04-09
scimago Q1
SJR0.760
CiteScore5.8
Impact factor2.8
ISSN15206106, 15205207, 10895647
PubMed ID:  16852143
Materials Chemistry
Surfaces, Coatings and Films
Physical and Theoretical Chemistry
Abstract
Bulk heterojunction photovoltaic devices based on blends of a conjugated polymer poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) as electron donor and crystalline ZnO nanoparticles (nc-ZnO) as electron acceptor have been studied. Composite nc-ZnO:MDMO-PPV films were cast from a common solvent mixture. Time-resolved pump-probe spectroscopy revealed that a photoinduced electron transfer from MDMO-PPV to nc-ZnO occurs in these blends on a sub-picosecond time scale and produces a long-lived (milliseconds) charge-separated state. The photovoltaic effect in devices, made by sandwiching the active nc-ZnO:MDMO-PPV layer between charge-selective electrodes, has been studied as a function of the ZnO concentration and the thickness of the layer. We also investigated changing the degree and type of mixing of the two components through the use of a surfactant for ZnO and by altering the size and shape of the nc-ZnO particles. Optimized devices have an estimated AM1.5 performance of 1.6% with incident photon to current conversion efficiencies up to 50%. Photoluminescence spectroscopy, atomic force microscopy, and transmission electron microscopy have been used to gain insight in the morphology of these blends.

Top-30

Journals

5
10
15
20
25
30
35
40
45
50
5
10
15
20
25
30
35
40
45
50

Publishers

50
100
150
200
250
50
100
150
200
250
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?