ACS Nano, volume 8, issue 10, pages 10321-10327
Solar Cells Based on Inks of n-Type Colloidal Quantum Dots
Publication type: Journal Article
Publication date: 2014-09-22
Journal:
ACS Nano
scimago Q1
SJR: 4.593
CiteScore: 26.0
Impact factor: 15.8
ISSN: 19360851, 1936086X
PubMed ID:
25225786
General Physics and Astronomy
General Materials Science
General Engineering
Abstract
New inorganic ligands including halide anions have significantly accelerated progress in colloidal quantum dot (CQD) photovoltaics in recent years. All such device reports to date have relied on halide treatment during solid-state ligand exchanges or on co-treatment of long-aliphatic-ligand-capped nanoparticles in the solution phase. Here we report solar cells based on a colloidal quantum dot ink that is capped using halide-based ligands alone. By judicious choice of solvents and ligands, we developed a CQD ink from which a homogeneous and thick colloidal quantum dot solid is applied in a single step. The resultant films display an n-type character, making it suitable as a key component in a solar-converting device. We demonstrate two types of quantum junction devices that exploit these iodide-ligand-based inks. We achieve solar power conversion efficiencies of 6% using this class of colloids.
Found
Are you a researcher?
Create a profile to get free access to personal recommendations for colleagues and new articles.