Plasmonic Metamaterials for Nanochemistry and Sensing
Тип публикации: Journal Article
Дата публикации: 2019-11-04
scimago Q1
wos Q1
БС1
SJR: 5.433
CiteScore: 30.7
Impact factor: 17.7
ISSN: 00014842, 15204898
PubMed ID:
31680511
General Chemistry
General Medicine
Краткое описание
Plasmonic nanostructures were initially developed for sensing and nanophotonic applications but, recently, have shown great promise in chemistry, optoelectronics, and nonlinear optics. While smooth plasmonic films, supporting surface plasmon polaritons, and individual nanostructures, featuring localized surface plasmons, are easy to fabricate and use, the assemblies of nanostructures in optical antennas and metamaterials provide many additional advantages related to the engineering of the mode structure (and thus, optical resonances in the given spectral range), field enhancement, and local density of optical states required to control electronic and photonic interactions. Focusing on two of the many applications of plasmonic metamaterials, in this Account, we review our work on the sensing and nanochemistry applications of metamaterials based on the assemblies of plasmonic nanorods under optical, as well as electronic interrogation. Sensors are widely employed in modern technology for the detection of events or changes in their local environment. Compared to their electronic counterparts, optical sensors offer a combination of high sensitivity, fast response, immunity to electromagnetic interference, and provide additional options for signal retrieval, such as optical intensity, spectrum, phase, and polarization. Owing to the ability to confine and enhance electromagnetic fields on subwavelength scales, plasmonics has been attracting increasing attention for the development of optical sensors with advantages including both nanometer-scale spatial resolution and single-molecule sensitivity. Inherent hot-electron generation in plasmonic nanostructures under illumination or during electron tunneling in the electrically biased nanostructures provides further opportunities for sensing and stimulation of chemical reactions, which would otherwise not be energetically possible. We first provide a brief introduction to a metamaterial sensing platform based on arrays of strongly coupled plasmonic nanorods. Several prototypical sensing examples based on this versatile metamaterial platform are presented. Record-high refractive index sensitivity of gold nanorod arrays in biosensing based on the functionalization of the nanorod surface for selective absorption arises because of the modification of the electromagnetic coupling between the nanorods in the array. The capabilities of nanorod metamaterials for ultrasound and hydrogen sensing were demonstrated by precision coating of the nanorods with functional materials to create core-shell nanostructures. The extension of this metamaterial platform to nanotube and nanocavity arrays, and metaparticles provides additional flexibility and removes restrictions on the illumination configurations for the optical interrogation. We then discuss a nanochemical platform based on the electrically driven metamaterials to stimulate and detect chemical reactions in the tunnel junctions constructed with the nanorods by exploiting elastic tunneling for the activation of chemical reactions via generated hot-electrons and inelastic tunneling for the excitation of plasmons facilitating optical monitoring of the process. This represents a new paradigm merging electronics, plasmonics, photonics and chemistry at the nanoscale, and creates opportunities for a variety of practical applications, such as hot-electron-driven nanoreactors and high-sensitivity sensors, as well as nanoscale light sources and modulators. With a combination of merits, such as the ability to simultaneously support both localized and propagating modes, nanoporous texture, rapid and facile functionalization, and low cost and scalability, plasmonic nanorod metamaterials provide an attractive and versatile platform for the development of optical sensors and nanochemical platforms using hot-electrons with high performance for applications in fundamental research and chemical and pharmaceutical industries.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Найдено
Ничего не найдено, попробуйте изменить настройки фильтра.
Топ-30
Журналы
|
1
2
3
4
5
|
|
|
Advanced Optical Materials
5 публикаций, 4.31%
|
|
|
Chemical Reviews
5 публикаций, 4.31%
|
|
|
Nanophotonics
4 публикации, 3.45%
|
|
|
Nano Letters
3 публикации, 2.59%
|
|
|
Small
3 публикации, 2.59%
|
|
|
ACS Photonics
3 публикации, 2.59%
|
|
|
Sensors
2 публикации, 1.72%
|
|
|
Optical and Quantum Electronics
2 публикации, 1.72%
|
|
|
Accounts of Chemical Research
2 публикации, 1.72%
|
|
|
Nanoscale Advances
2 публикации, 1.72%
|
|
|
IEEE Sensors Journal
2 публикации, 1.72%
|
|
|
Applied Optics
2 публикации, 1.72%
|
|
|
Optics Express
2 публикации, 1.72%
|
|
|
Materials Horizons
2 публикации, 1.72%
|
|
|
ACS Nano
2 публикации, 1.72%
|
|
|
ACS Omega
2 публикации, 1.72%
|
|
|
ACS applied materials & interfaces
2 публикации, 1.72%
|
|
|
Advanced Functional Materials
2 публикации, 1.72%
|
|
|
TrAC - Trends in Analytical Chemistry
1 публикация, 0.86%
|
|
|
Polymers
1 публикация, 0.86%
|
|
|
Advanced Materials
1 публикация, 0.86%
|
|
|
Journal of Applied Physics
1 публикация, 0.86%
|
|
|
Photochem
1 публикация, 0.86%
|
|
|
Frontiers in Physics
1 публикация, 0.86%
|
|
|
Nature Communications
1 публикация, 0.86%
|
|
|
MRS Bulletin
1 публикация, 0.86%
|
|
|
Microchimica Acta
1 публикация, 0.86%
|
|
|
Annalen der Physik
1 публикация, 0.86%
|
|
|
Langmuir
1 публикация, 0.86%
|
|
|
1
2
3
4
5
|
Издатели
|
5
10
15
20
25
30
|
|
|
American Chemical Society (ACS)
26 публикаций, 22.41%
|
|
|
Elsevier
22 публикации, 18.97%
|
|
|
Wiley
21 публикация, 18.1%
|
|
|
Royal Society of Chemistry (RSC)
9 публикаций, 7.76%
|
|
|
Springer Nature
8 публикаций, 6.9%
|
|
|
Optica Publishing Group
6 публикаций, 5.17%
|
|
|
MDPI
5 публикаций, 4.31%
|
|
|
Walter de Gruyter
4 публикации, 3.45%
|
|
|
AIP Publishing
3 публикации, 2.59%
|
|
|
Institute of Electrical and Electronics Engineers (IEEE)
3 публикации, 2.59%
|
|
|
IOP Publishing
2 публикации, 1.72%
|
|
|
Frontiers Media S.A.
1 публикация, 0.86%
|
|
|
Cambridge University Press
1 публикация, 0.86%
|
|
|
Japan Society of Applied Physics
1 публикация, 0.86%
|
|
|
Shanghai Institute of Optics and Fine Mechanics
1 публикация, 0.86%
|
|
|
Annual Reviews
1 публикация, 0.86%
|
|
|
IGI Global
1 публикация, 0.86%
|
|
|
SPIE-Intl Soc Optical Eng
1 публикация, 0.86%
|
|
|
5
10
15
20
25
30
|
- Мы не учитываем публикации, у которых нет DOI.
- Статистика публикаций обновляется еженедельно.
Вы ученый?
Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
116
Всего цитирований:
116
Цитирований c 2024:
37
(31.9%)
Цитировать
ГОСТ |
RIS |
BibTex |
MLA
Цитировать
ГОСТ
Скопировать
Wang P. et al. Plasmonic Metamaterials for Nanochemistry and Sensing // Accounts of Chemical Research. 2019. Vol. 52. No. 11. pp. 3018-3028.
ГОСТ со всеми авторами (до 50)
Скопировать
Wang P., Nasir M., Krasavin A. V., Dickson W., Jiang Y., Zayats A. Plasmonic Metamaterials for Nanochemistry and Sensing // Accounts of Chemical Research. 2019. Vol. 52. No. 11. pp. 3018-3028.
Цитировать
RIS
Скопировать
TY - JOUR
DO - 10.1021/acs.accounts.9b00325
UR - https://doi.org/10.1021/acs.accounts.9b00325
TI - Plasmonic Metamaterials for Nanochemistry and Sensing
T2 - Accounts of Chemical Research
AU - Wang, Pan
AU - Nasir, M
AU - Krasavin, Alexey V
AU - Dickson, Wayne
AU - Jiang, Yunlu
AU - Zayats, Anatoly
PY - 2019
DA - 2019/11/04
PB - American Chemical Society (ACS)
SP - 3018-3028
IS - 11
VL - 52
PMID - 31680511
SN - 0001-4842
SN - 1520-4898
ER -
Цитировать
BibTex (до 50 авторов)
Скопировать
@article{2019_Wang,
author = {Pan Wang and M Nasir and Alexey V Krasavin and Wayne Dickson and Yunlu Jiang and Anatoly Zayats},
title = {Plasmonic Metamaterials for Nanochemistry and Sensing},
journal = {Accounts of Chemical Research},
year = {2019},
volume = {52},
publisher = {American Chemical Society (ACS)},
month = {nov},
url = {https://doi.org/10.1021/acs.accounts.9b00325},
number = {11},
pages = {3018--3028},
doi = {10.1021/acs.accounts.9b00325}
}
Цитировать
MLA
Скопировать
Wang, Pan, et al. “Plasmonic Metamaterials for Nanochemistry and Sensing.” Accounts of Chemical Research, vol. 52, no. 11, Nov. 2019, pp. 3018-3028. https://doi.org/10.1021/acs.accounts.9b00325.
Профили