том 93 издание 3 страницы 1377-1382

Improvement in Signal-to-Noise Ratio of Liquid-State NMR Spectroscopy via a Deep Neural Network DN-Unet

Тип публикацииJournal Article
Дата публикации2020-12-30
scimago Q1
wos Q1
БС1
SJR1.533
CiteScore11.6
Impact factor6.7
ISSN00032700, 15206882, 21542686
Analytical Chemistry
Краткое описание
Nuclear magnetic resonance (NMR) is one of the most powerful analytical tools and is extensively applied in many fields. However, compared to other spectroscopic techniques, NMR has lower sensitivity, impeding its wider applications. Using data postprocessing techniques to increase the NMR spectral signal-to-noise ratio (SNR) is a relatively simple and cost-effective method. In this work, a deep neural network, termed as DN-Unet, is devised to suppress noise in liquid-state NMR spectra to enhance SNR. It combines structures of encoder-decoder and convolutional neural network. Different from traditional deep learning training strategy, M-to-S strategy is developed to enhance DN-Unet capability that multiple noisy spectra (inputs) correspond to a same single noiseless spectrum (label) in the training stage. The trained 1D model can be used for denoising not only 1D but also high dimension spectra, further improving DN-Unet's performance. 1D, 2D, and 3D NMR spectra were utilized to evaluate DN-Unet performance. The results suggest that DN-Unet provides larger than 200-fold increase in SNR with weak peaks hidden in noise perfectly recovered and spurious peaks suppressed well. Since DN-Unet developed here to increase SNR is based on data postprocessing, it is universal for a variety of samples and NMR platforms. The great SNR enhancement and extreme excellence in differentiating signal and noise would greatly promote various liquid-state NMR applications.
Найдено 
Найдено 

Топ-30

Журналы

1
2
3
4
5
6
7
Analytical Chemistry
7 публикаций, 12.5%
IEEE Transactions on Instrumentation and Measurement
3 публикации, 5.36%
Molecules
2 публикации, 3.57%
Magnetic Resonance Letters
2 публикации, 3.57%
Journal of Magnetic Resonance
2 публикации, 3.57%
TrAC - Trends in Analytical Chemistry
2 публикации, 3.57%
Advanced Science
2 публикации, 3.57%
Progress in Nuclear Magnetic Resonance Spectroscopy
2 публикации, 3.57%
Current Analytical Chemistry
1 публикация, 1.79%
BMC Bioinformatics
1 публикация, 1.79%
Progress in Materials Science
1 публикация, 1.79%
Journal of Physical Chemistry Letters
1 публикация, 1.79%
Journal of the American Society for Mass Spectrometry
1 публикация, 1.79%
RSC Advances
1 публикация, 1.79%
Chemical Communications
1 публикация, 1.79%
Handbook of Experimental Pharmacology
1 публикация, 1.79%
Journal of Separation Science
1 публикация, 1.79%
Nature Reviews Drug Discovery
1 публикация, 1.79%
Signal Processing
1 публикация, 1.79%
Journal of Chemical Information and Modeling
1 публикация, 1.79%
Phytochemistry Reviews
1 публикация, 1.79%
Journal of Organic Chemistry
1 публикация, 1.79%
Mendeleev Communications
1 публикация, 1.79%
Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica
1 публикация, 1.79%
Chemical Science
1 публикация, 1.79%
Journal of Medicinal Chemistry
1 публикация, 1.79%
Nature Communications
1 публикация, 1.79%
Bioorganic and Medicinal Chemistry
1 публикация, 1.79%
Metabolites
1 публикация, 1.79%
1
2
3
4
5
6
7

Издатели

2
4
6
8
10
12
14
16
Elsevier
15 публикаций, 26.79%
American Chemical Society (ACS)
14 публикаций, 25%
Institute of Electrical and Electronics Engineers (IEEE)
6 публикаций, 10.71%
Springer Nature
5 публикаций, 8.93%
MDPI
4 публикации, 7.14%
Royal Society of Chemistry (RSC)
4 публикации, 7.14%
Wiley
4 публикации, 7.14%
Bentham Science Publishers Ltd.
1 публикация, 1.79%
OOO Zhurnal "Mendeleevskie Soobshcheniya"
1 публикация, 1.79%
American Association for the Advancement of Science (AAAS)
1 публикация, 1.79%
2
4
6
8
10
12
14
16
  • Мы не учитываем публикации, у которых нет DOI.
  • Статистика публикаций обновляется еженедельно.

Вы ученый?

Создайте профиль, чтобы получать персональные рекомендации коллег, конференций и новых статей.
Метрики
56
Поделиться
Цитировать
ГОСТ |
Цитировать
Wu K. et al. Improvement in Signal-to-Noise Ratio of Liquid-State NMR Spectroscopy via a Deep Neural Network DN-Unet // Analytical Chemistry. 2020. Vol. 93. No. 3. pp. 1377-1382.
ГОСТ со всеми авторами (до 50) Скопировать
Wu K., Luo J., Zeng Q., Dong X., Chen J., Zhan C., Chen Z., Lin Y. Improvement in Signal-to-Noise Ratio of Liquid-State NMR Spectroscopy via a Deep Neural Network DN-Unet // Analytical Chemistry. 2020. Vol. 93. No. 3. pp. 1377-1382.
RIS |
Цитировать
TY - JOUR
DO - 10.1021/acs.analchem.0c03087
UR - https://doi.org/10.1021/acs.analchem.0c03087
TI - Improvement in Signal-to-Noise Ratio of Liquid-State NMR Spectroscopy via a Deep Neural Network DN-Unet
T2 - Analytical Chemistry
AU - Wu, Ke
AU - Luo, Jie
AU - Zeng, Qing
AU - Dong, Xi
AU - Chen, Jinyong
AU - Zhan, Chaoqun
AU - Chen, Zhong
AU - Lin, Yanqin
PY - 2020
DA - 2020/12/30
PB - American Chemical Society (ACS)
SP - 1377-1382
IS - 3
VL - 93
PMID - 33377773
SN - 0003-2700
SN - 1520-6882
SN - 2154-2686
ER -
BibTex |
Цитировать
BibTex (до 50 авторов) Скопировать
@article{2020_Wu,
author = {Ke Wu and Jie Luo and Qing Zeng and Xi Dong and Jinyong Chen and Chaoqun Zhan and Zhong Chen and Yanqin Lin},
title = {Improvement in Signal-to-Noise Ratio of Liquid-State NMR Spectroscopy via a Deep Neural Network DN-Unet},
journal = {Analytical Chemistry},
year = {2020},
volume = {93},
publisher = {American Chemical Society (ACS)},
month = {dec},
url = {https://doi.org/10.1021/acs.analchem.0c03087},
number = {3},
pages = {1377--1382},
doi = {10.1021/acs.analchem.0c03087}
}
MLA
Цитировать
Wu, Ke, et al. “Improvement in Signal-to-Noise Ratio of Liquid-State NMR Spectroscopy via a Deep Neural Network DN-Unet.” Analytical Chemistry, vol. 93, no. 3, Dec. 2020, pp. 1377-1382. https://doi.org/10.1021/acs.analchem.0c03087.