Chemical Reviews, volume 121, issue 15, pages 9359-9406

Carbonyl–Olefin Metathesis

Publication typeJournal Article
Publication date2021-06-16
Journal: Chemical Reviews
scimago Q1
wos Q1
SJR17.828
CiteScore106.0
Impact factor51.4
ISSN00092665, 15206890
General Chemistry
Abstract
This Review describes the development of strategies for carbonyl-olefin metathesis reactions relying on stepwise, stoichiometric, or catalytic approaches. A comprehensive overview of currently available methods is provided starting with Paternò-Büchi cycloadditions between carbonyls and alkenes, followed by fragmentation of the resulting oxetanes, metal alkylidene-mediated strategies, [3 + 2]-cycloaddition approaches with strained hydrazines as organocatalysts, Lewis acid-mediated and Lewis acid-catalyzed strategies relying on the formation of intermediate oxetanes, and protocols based on initial carbon-carbon bond formation between carbonyls and alkenes and subsequent Grob-fragmentations. The Review concludes with an overview of applications of these currently available methods for carbonyl-olefin metathesis in complex molecule synthesis. Over the past eight years, the field of carbonyl-olefin metathesis has grown significantly and expanded from stoichiometric reaction protocols to efficient catalytic strategies for ring-closing, ring-opening, and cross carbonyl-olefin metathesis. The aim of this Review is to capture the status quo of the field and is expected to contribute to further advancements in carbonyl-olefin metathesis in the coming years.
Found 

Top-30

Journals

2
4
6
8
10
2
4
6
8
10

Publishers

5
10
15
20
25
30
35
5
10
15
20
25
30
35
  • We do not take into account publications without a DOI.
  • Statistics recalculated only for publications connected to researchers, organizations and labs registered on the platform.
  • Statistics recalculated weekly.

Are you a researcher?

Create a profile to get free access to personal recommendations for colleagues and new articles.
Share
Cite this
GOST | RIS | BibTex | MLA
Found error?